Suppr超能文献

酵母样真菌出芽短梗霉 I15 中亚硒酸盐还原和单质硒纳米颗粒生物合成的多途径介导机制。

Multi-pathways-mediated mechanisms of selenite reduction and elemental selenium nanoparticles biogenesis in the yeast-like fungus Aureobasidium melanogenum I15.

机构信息

The Laboratory of Aquatic Parasitology and Microbial Bioresources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.

The Laboratory of Aquatic Parasitology and Microbial Bioresources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266237, China.

出版信息

J Hazard Mater. 2024 May 15;470:134204. doi: 10.1016/j.jhazmat.2024.134204. Epub 2024 Apr 3.

Abstract

Selenium (Se) plays a critical role in diverse biological processes and is widely used across manufacturing industries. However, the contamination of Se oxyanions also poses a major public health concern. Microbial transformation is a promising approach to detoxify Se oxyanions and produce elemental selenium nanoparticles (SeNPs) with versatile industrial potential. Yeast-like fungi are an important group of environmental microorganisms, but their mechanisms for Se oxyanions reduction remain unknown. In this study, we found that Aureobasidium melanogenum I15 can reduce 1.0 mM selenite by over 90% within 48 h and efficiently form intracellular or extracellular spherical SeNPs. Metabolomic and proteomic analyses disclosed that A. melanogenum I15 evolves a complicated selenite reduction mechanism involving multiple metabolic pathways, including the glutathione/glutathione reductase pathway, the thioredoxin/thioredoxin reductase pathway, the siderophore-mediated pathway, and multiple oxidoreductase-mediated pathways. This study provides the first report on the mechanism of selenite reduction and SeNPs biogenesis in yeast-like fungi and paves an alternative avenue for the bioremediation of selenite contamination and the production of functional organic selenium compounds.

摘要

硒(Se)在多种生物过程中发挥着关键作用,并且在制造业中被广泛应用。然而,硒氧阴离子的污染也引起了重大的公共健康问题。微生物转化是一种有前途的解毒硒氧阴离子的方法,可以生产具有多种工业潜力的元素硒纳米颗粒(SeNPs)。酵母样真菌是一类重要的环境微生物,但它们还原硒氧阴离子的机制尚不清楚。在本研究中,我们发现,出芽短梗霉 I15 可以在 48 小时内将 1.0mM 的亚硒酸盐还原超过 90%,并有效地形成细胞内或细胞外的球形 SeNPs。代谢组学和蛋白质组学分析揭示了 A. melanogenum I15 进化出了一种复杂的亚硒酸盐还原机制,涉及多种代谢途径,包括谷胱甘肽/谷胱甘肽还原酶途径、硫氧还蛋白/硫氧还蛋白还原酶途径、铁载体介导途径和多种氧化还原酶介导途径。本研究首次报道了酵母样真菌中亚硒酸盐还原和 SeNPs 生物发生的机制,为硒酸盐污染的生物修复和功能性有机硒化合物的生产开辟了一条替代途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验