Suppr超能文献

协同结构和铁空位工程实现高初始库仑效率和动力学加速在锂离子铁氧化物中的锂存储。

Synergistic Structure and Iron-Vacancy Engineering Realizing High Initial Coulombic Efficiency and Kinetically Accelerated Lithium Storage in Lithium Iron Oxide.

机构信息

Key Laboratory of Function-oriented Porous Materials of Henan Province, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan, 471934, P. R. China.

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China.

出版信息

Adv Sci (Weinh). 2023 Mar;10(9):e2206574. doi: 10.1002/advs.202206574. Epub 2023 Jan 22.

Abstract

Transition metal oxides with high capacity still confront the challenges of low initial coulombic efficiency (ICE, generally <70%) and inferior cyclic stability for practical lithium-storage. Herein, a hollow slender carambola-like Li FeO with Fe vacancies is proposed by a facile reaction of Fe -containing metal-organic frameworks with Li CO . Synthesis experiments combined with synchrotron-radiation X-ray measurements identify that the hollow structure is caused by Li CO erosion, while the formation of Fe vacancies is resulted from insufficient lithiation process with reduced Li CO dosage. The optimized lithium iron oxides exhibit remarkably improved ICE (from 68.24% to 86.78%), high-rate performance (357 mAh g at 5 A g ), and superior cycling stability (884 mAh g after 500 cycles at 0.5 A g ). Paring with LiFePO cathodes, the full-cells achieve extraordinary cyclic stability with 99.3% retention after 100 cycles. The improved electrochemical performances can be attributed to the synergy of structural characteristics and Fe vacancy engineering. The unique hollow structure alleviates the volume expansion of Li FeO , while the in situ generated Fe vacancies are powerful for modulating electronic structure with boosted Li transport rate and catalyze more Li O decomposition to react with Fe in the first charge process, hence enhancing the ICE of lithium iron oxide anode materials.

摘要

具有高容量的过渡金属氧化物仍然面临着初始库仑效率(ICE,通常<70%)低和循环稳定性差的挑战,无法实际应用于锂存储。在此,通过含 Fe 的金属-有机骨架与 Li2CO3的简单反应,提出了一种具有 Fe 空位的中空细长杨桃状 LiFeO。合成实验结合同步辐射 X 射线测量确定,中空结构是由 Li2CO3侵蚀引起的,而 Fe 空位的形成是由于 Li2CO3用量减少导致的锂化过程不足。优化后的锂离子氧化物表现出显著提高的 ICE(从 68.24%提高到 86.78%)、高倍率性能(在 5 A g-1时为 357 mAh g-1)和出色的循环稳定性(在 0.5 A g-1时 500 次循环后为 884 mAh g-1)。与 LiFePO4正极配对,全电池在 100 次循环后具有非凡的循环稳定性,保留率为 99.3%。改进的电化学性能可归因于结构特征和 Fe 空位工程的协同作用。独特的中空结构缓解了 LiFeO 的体积膨胀,而原位生成的 Fe 空位则可有效调节电子结构,提高 Li 传输率,并在首次充电过程中促进更多的 Li2O 分解与 Fe 反应,从而提高锂离子氧化物阳极材料的 ICE。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44f0/10037985/1e3ec9e7dc05/ADVS-10-2206574-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验