Suppr超能文献

通过生物模板化单原子铁氮介质实现的增强型双向硫氧化还原有望用于耐用的锂硫电池。

Enhanced Dual-Directional Sulfur Redox via a Biotemplated Single-Atomic Fe-N Mediator Promises Durable Li-S Batteries.

作者信息

Ding Yifan, Cheng Qiushi, Wu Jianghua, Yan Tianran, Shi Zixiong, Wang Menglei, Yang Dongzi, Wang Peng, Zhang Liang, Sun Jingyu

机构信息

College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China.

Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, China.

出版信息

Adv Mater. 2022 Jul;34(28):e2202256. doi: 10.1002/adma.202202256. Epub 2022 Jun 7.

Abstract

The lithium-sulfur (Li-S) battery is considered as an appealing candidate for next-generation electrochemical energy storage systems because of high energy and low cost. Nonetheless, its development is plagued by the severe polysulfide shuttling and sluggish reaction kinetics. Although single-atom catalysts (SACs) have emerged as a promising remedy to expedite sulfur redox chemistry, the mediocre single-atom loading, inferior atomic utilization, and elusive catalytic pathway handicap their practical application. To tackle these concerns, in this work, unsaturated Fe single atoms with high loading capacity (≈6.32 wt%) are crafted on a 3D hierarchical C N architecture (3DFeSA-CN) by means of biotemplated synthesis. By electrokinetic analysis and theoretical calculations, it is uncovered that the 3DFeSA-CN harnesses robust electrocatalytic activity to boost dual-directional sulfur redox. As a result, S@3DFeSA-CN can maintain a durable cyclic performance with a negligible capacity decay rate of 0.031% per cycle over 2000 cycles at 1.0 C. More encouragingly, an assembled Li-S battery with a sulfur loading of 5.75 mg cm can harvest a high areal capacity of 6.18 mAh cm . This work offers a promising solution to optimize the carbonaceous support and coordination environment of SACs, thereby ultimately elevating dual-directional sulfur redox in pragmatic Li-S batteries.

摘要

锂硫(Li-S)电池因其高能量和低成本,被视为下一代电化学储能系统的一个有吸引力的候选者。尽管如此,其发展受到严重的多硫化物穿梭和缓慢的反应动力学的困扰。虽然单原子催化剂(SACs)已成为加速硫氧化还原化学的一种有前景的解决方案,但中等的单原子负载量、较低的原子利用率和难以捉摸的催化途径阻碍了它们的实际应用。为了解决这些问题,在这项工作中,通过生物模板合成法在三维分级C N结构(3DFeSA-CN)上制备了具有高负载量(≈6.32 wt%)的不饱和铁单原子。通过动电分析和理论计算,发现3DFeSA-CN具有强大的电催化活性以促进双向硫氧化还原。结果,S@3DFeSA-CN在1.0 C下2000次循环中可保持持久的循环性能,每个循环的容量衰减率可忽略不计,为0.031%。更令人鼓舞的是,组装的硫负载量为5.75 mg cm的锂硫电池可获得6.18 mAh cm的高面积容量。这项工作为优化SACs的碳质载体和配位环境提供了一个有前景的解决方案,从而最终提升实用锂硫电池中的双向硫氧化还原。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验