Lund Lars Christian, Jensen Patricia Hjorslev, Pottegård Anton, Andersen Morten, Pratt Nicole, Hallas Jesper
Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark.
Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark.
Diabetes Obes Metab. 2023 May;25(5):1311-1320. doi: 10.1111/dom.14982. Epub 2023 Feb 10.
Drug-induced diabetes is underreported in conventional drug safety monitoring and may contribute to the increasing incidence of type 2 diabetes. Therefore, we used routinely collected prescription data to screen all commonly used drugs for diabetogenic effects.
Leveraging the Danish nationwide health registries, we used a case-only symmetry analysis design to evaluate all possible associations between drug initiation and subsequent diabetes. The study was conducted among individuals aged ≥40 years with a first-ever prescription for any antidiabetic drug 1996-2018 (n = 348 996). Sequence ratios (SRs) and 95% confidence intervals (CIs) were obtained for all possible drug class-diabetes combinations. A lower bound of the 95% CI >1.00 was considered a signal. Signals generated in Denmark were replicated using the Services Australia, Pharmaceutical Benefits Scheme 10% data extract.
Overall, 386 drug classes were investigated, of which 70 generated a signal. In total, 43 were classified as previously known based on the SIDER database or a literature review, for example, glucocorticoids (SR 1.67, 95% CI 1.62-1.72) and β-blockers (SR 1.20, 95% CI 1.16-1.23). Of 27 new signals, three drug classes yielded a signal in both the Danish and Australian data source: digitalis glycosides (SR 2.15, 95% CI 2.04-2.27, and SR 1.76, 95% CI 1.50-2.08), macrolides (SR 1.20, 95% CI 1.16-1.24, and SR 1.11, 95% CI 1.06-1.16) and inhaled β2-agonists combined with glucocorticoids (SR 1.35, 95% CI 1.28-1.42, and SR 1.14, 95% CI 1.06-1.22).
We identified 70 drug-diabetes associations, of which 27 were classified as hitherto unknown. Further studies evaluating the hypotheses generated by this work are needed, particularly for the signal for digitalis glycosides.
药物性糖尿病在传统药物安全性监测中报告不足,可能导致2型糖尿病发病率上升。因此,我们使用常规收集的处方数据来筛查所有常用药物的致糖尿病作用。
利用丹麦全国健康登记系统,我们采用仅病例对称分析设计来评估药物起始使用与随后发生糖尿病之间的所有可能关联。该研究在1996年至2018年首次开具任何抗糖尿病药物处方的≥40岁个体中进行(n = 348996)。获得了所有可能的药物类别与糖尿病组合的序列比(SR)和95%置信区间(CI)。95%CI的下限>1.00被视为一个信号。在丹麦产生的信号使用澳大利亚服务局药品福利计划10%的数据提取物进行了重复验证。
总体而言,共研究了386种药物类别,其中70种产生了信号。根据SIDER数据库或文献综述,共有43种被归类为先前已知的,例如糖皮质激素(SR 1.67,95%CI 1.62 - 1.72)和β受体阻滞剂(SR 1.20,95%CI 1.16 - 1.23)。在27个新信号中,有三类药物在丹麦和澳大利亚数据源中均产生了信号:洋地黄苷(SR 2.15,95%CI 2.04 - 2.27,以及SR 1.76,95%CI 1.50 - 2.08)、大环内酯类(SR 1.20,95%CI 1.16 - 1.24,以及SR 1.11,95%CI 1.06 - 1.16)和吸入性β2激动剂与糖皮质激素联合使用(SR 1.35,95%CI 1.28 - 1.42,以及SR 1.14,95%CI 1.06 - 1.22)。
我们确定了70种药物与糖尿病的关联,其中27种被归类为迄今未知。需要进一步研究来评估这项工作产生的假设,特别是针对洋地黄苷的信号。