Suppr超能文献

在为分析准备药物暴露数据时所作的假设会对结果产生影响:药物流行病学研究中未报告的步骤。

Assumptions made when preparing drug exposure data for analysis have an impact on results: An unreported step in pharmacoepidemiology studies.

机构信息

Arthritis Research UK Centre for Epidemiology, Centre for Musculoskeletal Research, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada.

出版信息

Pharmacoepidemiol Drug Saf. 2018 Jul;27(7):781-788. doi: 10.1002/pds.4440. Epub 2018 Apr 17.

Abstract

PURPOSE

Real-world data for observational research commonly require formatting and cleaning prior to analysis. Data preparation steps are rarely reported adequately and are likely to vary between research groups. Variation in methodology could potentially affect study outcomes. This study aimed to develop a framework to define and document drug data preparation and to examine the impact of different assumptions on results.

METHODS

An algorithm for processing prescription data was developed and tested using data from the Clinical Practice Research Datalink (CPRD). The impact of varying assumptions was examined by estimating the association between 2 exemplar medications (oral hypoglycaemic drugs and glucocorticoids) and cardiovascular events after preparing multiple datasets derived from the same source prescription data. Each dataset was analysed using Cox proportional hazards modelling.

RESULTS

The algorithm included 10 decision nodes and 54 possible unique assumptions. Over 11 000 possible pathways through the algorithm were identified. In both exemplar studies, similar hazard ratios and standard errors were found for the majority of pathways; however, certain assumptions had a greater influence on results. For example, in the hypoglycaemic analysis, choosing a different variable to define prescription end date altered the hazard ratios (95% confidence intervals) from 1.77 (1.56-2.00) to 2.83 (1.59-5.04).

CONCLUSIONS

The framework offers a transparent and efficient way to perform and report drug data preparation steps. Assumptions made during data preparation can impact the results of analyses. Improving transparency regarding drug data preparation would increase the repeatability, reproducibility, and comparability of published results.

摘要

目的

观察性研究的真实世界数据通常需要在分析前进行格式和清理。数据准备步骤很少被充分报告,并且可能因研究组而异。方法学的差异可能会对研究结果产生影响。本研究旨在制定一个定义和记录药物数据准备的框架,并研究不同假设对结果的影响。

方法

开发了一种用于处理处方数据的算法,并使用来自临床实践研究数据链(CPRD)的数据对其进行了测试。通过从相同来源的处方数据中制备多个数据集,并使用 Cox 比例风险模型分析每个数据集,来检查不同假设的影响。

结果

该算法包含 10 个决策节点和 54 个可能的独特假设。在算法中识别出超过 11000 种可能的路径。在两个示例研究中,大多数路径的危险比和标准误差相似;然而,某些假设对结果的影响更大。例如,在降糖分析中,选择不同的变量来定义处方结束日期会改变危险比(95%置信区间),从 1.77(1.56-2.00)变为 2.83(1.59-5.04)。

结论

该框架提供了一种透明且高效的方法来执行和报告药物数据准备步骤。数据准备过程中的假设会影响分析结果。提高药物数据准备的透明度将增加已发表结果的可重复性、可再现性和可比性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f0b/6055712/ad129fb43901/PDS-27-781-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验