Liu Juanzu, Zhu Han, Lin Leping, Zhao Wei, Zhu Xiaobo, Pang Dai-Wen, Liu An-An
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, 300071, P. R. China.
Cannano Jiayuan (Guangzhou) Science & Technology Co., Ltd, Guangzhou, 510700, P. R. China.
Small. 2023 Apr;19(16):e2206272. doi: 10.1002/smll.202206272. Epub 2023 Jan 22.
The redox homeostasis in tumors enhances their antioxidant defense ability, limiting reactive oxygen species mediated tumor therapy efficacy. The development of strategies for specific and continuous disruption of the redox homeostasis in tumor cells facilitates the improvement of the cancer therapeutic effect by promoting the apoptosis of tumor cells. Herein, a responsively biodegradable targeting multifunctional integrated nanosphere (HDMn-QDs/PEG-FA) is designed to enhance the anti-tumor efficacy by triggering intratumoral cascade reactions to effectively disrupt intracellular redox homeostasis. Once HDMn-QDs/PEG-FA enters tumor cells, manganese dioxide (MnO ) shell on the surface of nanosphere consumes glutathione (GSH) to produce Mn , enabling enhanced chemodynamic therapy (CDT) via a Fenton-like reaction and T -weighted magnetic resonance imaging. Meanwhile, the degradation of MnO can also cause the fluorescence recovery of quantum dots conjugated on the surface of the shell, realizing "turn-on" fluorescence imaging. In addition, the doxorubicin is released because of the cleavage of the embedded SS bond in the hybrid core framework by GSH. A superior synergistic therapeutic efficiency combined CDT and chemotherapy is shown by HDMn-QDs/PEG-FA in vivo. The tumor-inhibition rate reaches to 94.8% and does not cause normal tissue damage due to the good targeting and tumor microenvironment-specific response.
肿瘤中的氧化还原稳态增强了其抗氧化防御能力,限制了活性氧介导的肿瘤治疗效果。开发特异性和持续性破坏肿瘤细胞氧化还原稳态的策略,有助于通过促进肿瘤细胞凋亡来提高癌症治疗效果。在此,设计了一种响应性可生物降解的靶向多功能集成纳米球(HDMn-QDs/PEG-FA),通过触发肿瘤内级联反应有效破坏细胞内氧化还原稳态,从而增强抗肿瘤疗效。一旦HDMn-QDs/PEG-FA进入肿瘤细胞,纳米球表面的二氧化锰(MnO)壳消耗谷胱甘肽(GSH)生成Mn,通过类芬顿反应和T加权磁共振成像实现增强的化学动力学疗法(CDT)。同时,MnO的降解还可导致壳表面共轭量子点的荧光恢复,实现“开启”荧光成像。此外,由于GSH切割杂化核心框架中嵌入的S-S键,阿霉素被释放出来。HDMn-QDs/PEG-FA在体内显示出CDT与化疗相结合的优异协同治疗效果。肿瘤抑制率达到94.8%,且由于良好的靶向性和肿瘤微环境特异性响应,未造成正常组织损伤。