Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz, 6, 20146, Hamburg, Germany.
Department of Chemical Engineering, University of Western Macedonia, Koila, Kozani, 50100, Greece.
Adv Sci (Weinh). 2023 Feb;10(6):e2205890. doi: 10.1002/advs.202205890. Epub 2023 Jan 22.
Nanoporosity is clearly beneficial for the performance of heterogeneous catalysts. Although exsolution is a modern method to design innovative catalysts, thus far it is predominantly studied for sintered matrices. A quantitative description of the exsolution of Ni nanoparticles from nanoporous perovskite oxides and their effective application in the biogas dry reforming is here presented. The exsolution process is studied between 500 and 900 °C in nanoporous and sintered La Sr Ti Ni O . Using temperature-programmed reduction (TPR) and X-ray absorption spectroscopy (XAS), it is shown that the faster and larger oxygen release in the nanoporous material is responsible for twice as high Ni reduction than in the sintered system. For the nanoporous material, the nanoparticle formation mechanism, studied by in situ TEM and small-angle X-ray scattering (SAXS), follows the classical nucleation theory, while on sintered systems also small endogenous nanoparticles form despite the low Ni concentration. Biogas dry reforming tests demonstrate that nanoporous exsolved catalysts are up to 18 times more active than sintered ones with 90% of CO conversion at 800 °C. Time-on-stream tests exhibit superior long-term stability (only 3% activity loss in 8 h) and full regenerability (over three cycles) of the nanoporous exsolved materials in comparison to a commercial Ni/Al O catalyst.
纳米多孔性显然有利于多相催化剂的性能。尽管离溶作用是设计创新催化剂的现代方法,但迄今为止,它主要研究的是烧结基质。本文介绍了从纳米多孔钙钛矿氧化物中离析出纳米镍颗粒及其在沼气干重整中有效应用的定量描述。在 500 至 900°C 的温度范围内,在纳米多孔和烧结的 La Sr Ti Ni O 中研究了离溶过程。使用程序升温还原(TPR)和 X 射线吸收光谱(XAS),表明纳米多孔材料中更快和更大的氧释放导致镍还原的速率比烧结体系高两倍。对于纳米多孔材料,通过原位 TEM 和小角 X 射线散射(SAXS)研究的纳米颗粒形成机制遵循经典成核理论,而在烧结体系中,尽管 Ni 浓度较低,也会形成小的内源性纳米颗粒。沼气干重整测试表明,纳米多孔离溶催化剂的活性比烧结催化剂高 18 倍,在 800°C 时 CO 转化率达到 90%。与商业 Ni/Al O 催化剂相比,纳米多孔离溶材料在 8 小时的时间内具有优异的长期稳定性(仅损失 3%的活性)和完全的可再生性(超过三个循环)。