Delila Liling, Nebie Ouada, Le Nhi Thao Ngoc, Barro Lassina, Chou Ming-Li, Wu Yu-Wen, Watanabe Naoto, Takahara Masayasu, Buée Luc, Blum David, Devos David, Burnouf Thierry
Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering Taipei Medical University Taipei Taiwan.
Univ. Lille, Inserm, CHU-Lille, U1172, Lille Neuroscience & Cognition Lille France.
Bioeng Transl Med. 2022 Jul 12;8(1):e10360. doi: 10.1002/btm2.10360. eCollection 2023 Jan.
Brain administration of human platelet lysates (HPL) is a potential emerging biotherapy of neurodegenerative and traumatic diseases of the central nervous system. HPLs being prepared from pooled platelet concentrates, thereby increasing viral risks, manufacturing processes should incorporate robust virus-reduction treatments. We evaluated a 19 ± 2-nm virus removal nanofiltration process using hydrophilic regenerated cellulose hollow fibers on the properties of a neuroprotective heat-treated HPL (HPPL). Spiking experiments demonstrated >5.30 log removal of 20-22-nm non-enveloped minute virus of mice-mock particles using an immuno-quantitative polymerase chain reaction assay. The nanofiltered HPPL (NHPPL) contained a range of neurotrophic factors like HPPL. There was >2 log removal of extracellular vesicles (EVs), associated with decreased expression of pro-thrombogenic phosphatidylserine and procoagulant activity. LC-MS/MS proteomics showed that ca. 80% of HPPL proteins, including neurotrophins, cytokines, and antioxidants, were still found in NHPPL, whereas proteins associated with some infections and cancer-associated pathways, pro-coagulation and EVs, were removed. NHPPL maintained intact neuroprotective activity in Lund human mesencephalic dopaminergic neuron model of Parkinson's disease (PD), stimulated the differentiation of SH-SY5Y neuronal cells and showed preserved anti-inflammatory function upon intranasal administration in a mouse model of traumatic brain injury (TBI). Therefore, nanofiltration of HPL is feasible, lowers the viral, prothrombotic and procoagulant risks, and preserves the neuroprotective and anti-inflammatory properties in neuronal pre-clinical models of PD and TBI.
向脑部注射人血小板裂解物(HPL)是一种潜在的新兴生物疗法,可用于治疗中枢神经系统的神经退行性疾病和创伤性疾病。由于HPL是由混合血小板浓缩物制备而成,从而增加了病毒风险,因此生产过程应采用强大的病毒去除处理方法。我们使用亲水性再生纤维素中空纤维,对经过神经保护性热处理的HPL(HPPL)的特性进行了19±2纳米病毒去除纳滤过程评估。加标实验表明,使用免疫定量聚合酶链反应测定法,可去除>5.30 log的20 - 22纳米无包膜小鼠微小病毒模拟颗粒。纳滤后的HPPL(NHPPL)含有一系列与HPPL类似的神经营养因子。细胞外囊泡(EV)的去除率>2 log,同时促血栓形成的磷脂酰丝氨酸表达降低,促凝血活性也降低。液相色谱 - 串联质谱(LC-MS/MS)蛋白质组学显示,NHPPL中仍可检测到约80%的HPPL蛋白质,包括神经营养因子、细胞因子和抗氧化剂,而与某些感染和癌症相关途径、促凝血和EV相关的蛋白质则被去除。在帕金森病(PD)的 Lund 人脑中脑多巴胺能神经元模型中,NHPPL保持了完整的神经保护活性,刺激了SH-SY5Y神经元细胞的分化,并在创伤性脑损伤(TBI)小鼠模型中经鼻给药后显示出保留的抗炎功能。因此,对HPL进行纳滤是可行的,可降低病毒、促血栓形成和促凝血风险,并在PD和TBI的神经元临床前模型中保留神经保护和抗炎特性。