Kumari Punam, Seeja K R
Department of Computer Science & Engineering, Indira Gandhi Delhi Technical University for Women, Delhi, India.
Multimed Tools Appl. 2023;82(13):20589-20604. doi: 10.1007/s11042-023-14386-1. Epub 2023 Jan 13.
The use of face mask during the COVID-19 pandemic has increased the popularity of the periocular biometrics in surveillance applications. Despite of the rapid advancements in this area, matching images over cross spectrum is still a challenging problem. Reason may be two-fold 1) variations in image illumination 2) small size of available data sets and/or class imbalance problem. This paper proposes Siamese architecture based convolutional neural networks which works on the concept of one-shot classification. In one shot classification, network requires a single training example from each class to train the complete model which may lead to reduce the need of large dataset as well as doesn't matter whether the dataset is imbalance. The proposed architectures comprise of identical subnetworks with shared weights whose performance is assessed on three publicly available databases namely IMP, UTIRIS and PolyU with four different loss functions namely Binary cross entropy loss, Hinge loss, contrastive loss and Triplet loss. In order to mitigate the inherent illumination variations of cross spectrum images CLAHE was used to preprocess images. Extensive experiments show that the proposed Siamese CNN model with triplet loss function outperforms the states of the art periocular verification methods for cross, mono and multi spectral periocular image matching.
在新冠疫情期间,口罩的使用增加了眼部生物特征识别在监控应用中的受欢迎程度。尽管该领域取得了快速进展,但跨光谱匹配图像仍然是一个具有挑战性的问题。原因可能有两方面:1)图像光照变化;2)可用数据集规模小和/或类别不平衡问题。本文提出了基于暹罗架构的卷积神经网络,其基于一次性分类的概念运行。在一次性分类中,网络需要每个类别的单个训练示例来训练完整模型,这可能会减少对大数据集的需求,并且数据集是否不平衡也无关紧要。所提出的架构由具有共享权重的相同子网络组成,其性能在三个公开可用的数据库(即IMP、UTIRIS和PolyU)上进行评估,使用了四种不同的损失函数,即二元交叉熵损失、铰链损失、对比损失和三元组损失。为了减轻跨光谱图像固有的光照变化,使用CLAHE对图像进行预处理。大量实验表明,所提出的具有三元组损失函数的暹罗卷积神经网络模型在跨光谱、单光谱和多光谱眼部图像匹配方面优于现有的眼部验证方法。