Xiao Chuanbao, Yuan Jilin, Li Linyang, Zhong Nianbing, Zhong Dengjie, Xie Quanhua, Chang Haixing, Xu Yunlan, He Xuefeng, Li Min
Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing, 400054, China.
School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
Environ Sci Ecotechnol. 2022 Dec 30;14:100234. doi: 10.1016/j.ese.2022.100234. eCollection 2023 Apr.
Tetracyclines are refractory pollutants that cause persistent harm to the environment and human health. Therefore, it is urgently necessary to develop methods to promote the efficient degradation and conversion of tetracyclines in wastewater. This report proposes a photobiocatalytic synergistic system involving the coupling of GeO/Zn-doped phosphotungstic acid hydrate/TiO (GeO/Zn-HPW/TiO)-loaded photocatalytic optical hollow fibers (POHFs) and an algal-bacterial biofilm. The GeO/Zn-HPW/TiO photocatalyst exhibits a broad absorption edge extending to 1000 nm, as well as high-efficiency photoelectric conversion and electron transfer, which allow the GeO/Zn-HPW/TiO-coated POHFs to provide high light intensity to promote biofilm growth. The resulting high photocatalytic activity rapidly and stably reduces the toxicity and increases the biodegradability of tetracycline-containing wastewater. The biofilm enriched with sp., and , maintains its activity for the rapid photocatalytic degradation and biotransformation of intermediates to generate the O required for photocatalysis. Overall, the synergistic photocatalytic biofilm system developed herein provides an effective and efficient approach for the rapid degradation and conversion of water containing high concentrations of tetracycline.
四环素是难降解污染物,会对环境和人类健康造成持续危害。因此,迫切需要开发促进废水中四环素高效降解和转化的方法。本报告提出了一种光生物催化协同体系,该体系涉及负载有GeO/Zn掺杂水合磷钨酸/TiO(GeO/Zn-HPW/TiO)的光催化光学中空纤维(POHFs)与藻菌生物膜的耦合。GeO/Zn-HPW/TiO光催化剂具有延伸至1000nm的宽吸收边缘,以及高效的光电转换和电子转移,这使得涂覆有GeO/Zn-HPW/TiO的POHFs能够提供高光强度以促进生物膜生长。由此产生的高光催化活性能够快速稳定地降低含四环素废水的毒性并提高其生物降解性。富含 sp.和 的生物膜保持其活性,用于对中间体进行快速光催化降解和生物转化,以产生光催化所需的O。总体而言,本文开发的协同光催化生物膜系统为快速降解和转化高浓度含四环素的水提供了一种有效且高效的方法。