Suppr超能文献

用于城市污水低碳氮去除的藻菌共生生物膜系统综述

Algae-bacteria symbiotic biofilm system for low carbon nitrogen removal from municipal wastewater: A review.

作者信息

Liang Zhiyuan, Zhao Ying, Ji Hongbing, Li Zifu

机构信息

School of Energy and Environmental Engineering, University of Science and Technology, Beijing, 100083, China.

Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology, Beijing, 100083, PR China.

出版信息

World J Microbiol Biotechnol. 2025 Jun 25;41(7):218. doi: 10.1007/s11274-025-04405-8.

Abstract

The treatment of municipal wastewater has become a significant challenge due to its intricate composition and low carbon-to-nitrogen ratio. In order to meet the discharge standards, a large amount of energy is consumed. In this context, the incorporation of microalgae into the conventional activated sludge process has become a promising strategy for low-carbon denitrification. This study aims to integrate research on algal-bacterial symbiotic systems with biofilm technology to enhance energy-efficient nitrogen removal in municipal wastewater treatment. Through comprehensive analysis, this paper elucidates (1) the developmental dynamics of algal-bacterial symbioses, (2) the process of combining algal-bacterial symbiotic systems with biofilm systems, (3) the fundamentals and operational determinants of algal-bacterial symbiotic membrane systems, and (4) the potential applications in sustainable water treatment. The proposed hybrid system demonstrates significant potential for carbon-neutral wastewater treatment through synergistic pollutant degradation, offering an innovative approach to address critical challenges in environmental sustainability and water resource management.

摘要

由于城市污水成分复杂且碳氮比低,其处理已成为一项重大挑战。为了达到排放标准,需要消耗大量能源。在此背景下,将微藻引入传统活性污泥工艺已成为一种有前景的低碳脱氮策略。本研究旨在将藻菌共生系统的研究与生物膜技术相结合,以提高城市污水处理中氮的高效去除。通过综合分析,本文阐明了:(1)藻菌共生体的发育动态;(2)藻菌共生系统与生物膜系统相结合的过程;(3)藻菌共生膜系统的基本原理和运行决定因素;(4)在可持续水处理中的潜在应用。所提出的混合系统通过协同污染物降解在碳中和污水处理方面显示出巨大潜力,为应对环境可持续性和水资源管理中的关键挑战提供了一种创新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验