School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Chemical Sciences & Technology, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 650091, China.
Kunming Academy of Eco-Environmental Sciences, Kunming 650032, China.
Molecules. 2023 Jan 2;28(1):386. doi: 10.3390/molecules28010386.
In this study, Co-doped TiO was synthesized using waste tobacco stem silk (TSS) as a template via a one-pot impregnation method. These samples were characterized using various physicochemical techniques such as N adsorption/desorption analysis, diffuse reflectance UV-visible spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and electron paramagnetic resonance spectroscopy. The synthesized material was used for the photodegradation of tetracycline hydrochloride (TCH) under visible light (420-800 nm). No strong photodegradation activity was observed for mesoporous TiO synthesized using waste TSS as a template, mesoporous Co-doped TiO, or TiO. In contrast, Co-doped mesoporous TiO synthesized using waste TSS as a template exhibited significant photocatalytic degradation, with 86% removal of TCH. Moreover, owing to the unique chemical structure of Ti-O-Co, the energy gap of TiO decreased. The edge of the absorption band was redshifted, such that the photoexcitation energy for generating electron-hole pairs decreased. The electron-hole separation efficiency improved, rendering the microstructured biotemplated TiO a much more efficient catalyst for the visible-light degradation of TCH.
在这项研究中,使用废烟草茎丝(TSS)作为模板,通过一锅浸渍法合成了 Co 共掺杂 TiO。使用各种物理化学技术对这些样品进行了表征,例如 N 吸附/解吸分析、漫反射紫外可见光谱、X 射线衍射、场发射扫描电子显微镜、高分辨率透射电子显微镜、X 射线光电子能谱、光致发光光谱和电子顺磁共振光谱。合成的材料用于可见光(420-800nm)下盐酸四环素(TCH)的光降解。使用废 TSS 作为模板合成的介孔 TiO、Co 共掺杂 TiO 或 TiO 没有表现出很强的光降解活性。相比之下,使用废 TSS 作为模板合成的 Co 共掺杂介孔 TiO 表现出显著的光催化降解活性,TCH 的去除率达到 86%。此外,由于 Ti-O-Co 的独特化学结构,TiO 的能隙降低。吸收带的边缘发生红移,使得产生电子-空穴对的光激发能降低。电子-空穴分离效率提高,使得微结构生物模板 TiO 成为 TCH 的可见光降解更有效的催化剂。