Suppr超能文献

审视亲密伴侣暴力相关死亡案例:基于美国国家数据的过往经验与未来方向

Examining Intimate Partner Violence-Related Fatalities: Past Lessons and Future Directions Using U.S. National Data.

作者信息

AbiNader Millan A, Graham Laurie M, Kafka Julie M

机构信息

School of Social Policy and Practice, University of Pennsylvania, 3701 Locust Walk, Philadelphia, PA 19104 USA.

School of Social Work, University of Maryland-Baltimore, Baltimore, MD USA.

出版信息

J Fam Violence. 2023 Jan 12:1-12. doi: 10.1007/s10896-022-00487-2.

Abstract

PURPOSE

Among homicides in the United States, intimate partners kill almost 50% of female and 10% of male victims. Intimate partner violence (IPV) also contributes to an estimated 6% of suicides. These trends suggest that opportunities for IPV interventions prior to the fatalities may have been missed. Thus, researchers must investigate the context and circumstances of IPV-related fatalities to inform effective prevention strategy development. There are two primary national fatality databases that can be used to examine such factors: the National Violent Death Reporting System (NVDRS, homicide and suicides); and the Uniform Crime Reporting-Supplementary Homicide Reports (UCR-SHR, homicides). These datasets include data on many IPV-related violent deaths but are limited by variations in data quality.

METHOD

This critical review summarizes opportunities and challenges when examining IPV-related fatalities using these national datasets. To document how the current literature is conceptualizing IPV, a rapid review on IPV-related homicide and suicide articles was performed (2019-2022). Missingness analyses were conducted to describe limitations in key dataset variables.

RESULTS

These datasets enable tracking IPV-related fatalities nationally over time. However, issues with the operationalization of variables that record IPV circumstances, particularly in the UCR-SHR, and high levels of missingness represent significant barriers to research. Novel methodologies can optimize the use of these datasets.

CONCLUSION

National-level datasets enable researchers to examine IPV-related fatalities, evaluate policy differences between states, and monitor trends and disparities. This research can inform key recommendations for interventions to prevent IPV-related fatalities.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s10896-022-00487-2.

摘要

目的

在美国的凶杀案中,亲密伴侣杀害了近50%的女性受害者和10%的男性受害者。亲密伴侣暴力(IPV)估计还导致了6%的自杀事件。这些趋势表明,在发生致命事件之前可能错失了干预亲密伴侣暴力的机会。因此,研究人员必须调查与亲密伴侣暴力相关的死亡事件的背景和情况,以为制定有效的预防策略提供依据。有两个主要的全国性死亡数据库可用于研究此类因素:国家暴力死亡报告系统(NVDRS,包括凶杀案和自杀案);以及统一犯罪报告 - 补充凶杀案报告(UCR - SHR,仅凶杀案)。这些数据集包含了许多与亲密伴侣暴力相关的暴力死亡数据,但受数据质量差异的限制。

方法

本批判性综述总结了使用这些全国性数据集研究与亲密伴侣暴力相关的死亡事件时的机遇和挑战。为了记录当前文献如何对亲密伴侣暴力进行概念化,对2019 - 2022年与亲密伴侣暴力相关的凶杀案和自杀案文章进行了快速综述。进行了缺失值分析以描述关键数据集变量的局限性。

结果

这些数据集能够在全国范围内长期追踪与亲密伴侣暴力相关的死亡事件。然而,记录亲密伴侣暴力情况的变量的操作化问题,特别是在UCR - SHR中,以及大量的缺失值是研究的重大障碍。新的方法可以优化这些数据集的使用。

结论

国家级数据集使研究人员能够研究与亲密伴侣暴力相关的死亡事件,评估各州之间的政策差异,并监测趋势和差异。这项研究可为预防与亲密伴侣暴力相关的死亡事件的干预措施提供关键建议。

补充信息

在线版本包含可在10.1007/s10896 - 022 - 00487 - 2获取的补充材料。

相似文献

引用本文的文献

9
Intimate Partner Violence Circumstances for Fatal Violence in the US.美国致命暴力中亲密伴侣暴力的情况。
JAMA Netw Open. 2023 May 1;6(5):e2312768. doi: 10.1001/jamanetworkopen.2023.12768.

本文引用的文献

3
A Critical Review of Text Mining Applications for Suicide Research.自杀研究中文本挖掘应用的批判性综述
Curr Epidemiol Rep. 2022;9(3):126-134. doi: 10.1007/s40471-022-00293-w. Epub 2022 Jul 26.
4
Intimate partner violence victimization and perpetration as precursors to suicide.亲密伴侣暴力受害与施暴作为自杀的先兆。
SSM Popul Health. 2022 Mar 25;18:101079. doi: 10.1016/j.ssmph.2022.101079. eCollection 2022 Jun.
5
Integrating topic modeling and word embedding to characterize violent deaths.整合主题建模和词嵌入技术以刻画暴力死亡事件
Proc Natl Acad Sci U S A. 2022 Mar 8;119(10):e2108801119. doi: 10.1073/pnas.2108801119. Epub 2022 Mar 3.
9
Firearms and protective orders in intimate partner homicides.亲密伴侣杀人案中的枪支与保护令
J Fam Violence. 2021;36:587-596. doi: 10.1007/s10896-020-00165-1. Epub 2020 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验