Suppr超能文献

利用自然语言处理和监督机器学习技术在国家暴力死亡报告系统中开发和验证用于自杀的亲密伴侣暴力情况检测工具。

Detecting intimate partner violence circumstance for suicide: development and validation of a tool using natural language processing and supervised machine learning in the National Violent Death Reporting System.

机构信息

Health Behavior, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA

The University of North Carolina Injury Prevention Research Center, Chapel Hill, North Carolina, USA.

出版信息

Inj Prev. 2023 Apr;29(2):134-141. doi: 10.1136/ip-2022-044662. Epub 2022 Dec 6.

Abstract

BACKGROUND

Intimate partner violence (IPV) victims and perpetrators often report suicidal ideation, yet there is no comprehensive national dataset that allows for an assessment of the connection between IPV and suicide. The National Violent Death Reporting System (NVDRS) captures IPV circumstances for homicide-suicides (<2% of suicides), but not single suicides (suicide unconnected to other violent deaths; >98% of suicides).

OBJECTIVE

To facilitate a more comprehensive understanding of the co-occurrence of IPV and suicide, we developed and validated a tool that detects mentions of IPV circumstances (yes/no) for single suicides in NVDRS death narratives.

METHODS

We used 10 000 hand-labelled single suicide cases from NVDRS (2010-2018) to train (n=8500) and validate (n=1500) a classification model using supervised machine learning. We used natural language processing to extract relevant information from the death narratives within a concept normalisation framework. We tested numerous models and present performance metrics for the best approach.

RESULTS

Our final model had robust sensitivity (0.70), specificity (0.98), precision (0.72) and kappa values (0.69). False positives mostly described other family violence. False negatives used vague and heterogeneous language to describe IPV, and often included abusive suicide threats.

IMPLICATIONS

It is possible to detect IPV circumstances among singles suicides in NVDRS, although vague language in death narratives limited our tool's sensitivity. More attention to the role of IPV in suicide is merited both during the initial death investigation processes and subsequent NVDRS reporting. This tool can support future research to inform targeted prevention.

摘要

背景

亲密伴侣暴力(IPV)的受害者和施害者经常报告自杀意念,但没有全面的国家数据集能够评估 IPV 与自杀之间的联系。国家暴力死亡报告系统(NVDRS)记录了凶杀自杀案件中的 IPV 情况(占自杀案件的<2%),但没有记录单独自杀案件(与其他暴力死亡无关的自杀;占自杀案件的>98%)。

目的

为了更全面地了解 IPV 和自杀的同时发生,我们开发并验证了一种工具,用于检测 NVDRS 死亡叙述中单独自杀案件中 IPV 情况的提及(是/否)。

方法

我们使用 NVDRS(2010-2018 年)中的 10000 个手动标记的单独自杀案例来训练(n=8500)和验证(n=1500)一个分类模型,使用监督机器学习。我们使用自然语言处理从概念规范化框架内的死亡叙述中提取相关信息。我们测试了许多模型,并展示了最佳方法的性能指标。

结果

我们的最终模型具有稳健的敏感性(0.70)、特异性(0.98)、精度(0.72)和kappa 值(0.69)。假阳性大多描述了其他家庭暴力。假阴性使用模糊和异构的语言来描述 IPV,并且经常包括虐待自杀威胁。

结论

虽然死亡叙述中的模糊语言限制了我们工具的敏感性,但在 NVDRS 中可以检测到单独自杀案件中的 IPV 情况。在初始死亡调查过程中和随后的 NVDRS 报告中,更加关注 IPV 在自杀中的作用是值得的。该工具可以支持未来的研究,为有针对性的预防提供信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验