文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

关键m6A修饰调节因子作为骨质疏松症潜在生物标志物的鉴定与实验验证

Identification and experimental validation of key m6A modification regulators as potential biomarkers of osteoporosis.

作者信息

Qiao Yanchun, Li Jie, Liu Dandan, Zhang Chenying, Liu Yang, Zheng Shuguo

机构信息

Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.

出版信息

Front Genet. 2023 Jan 6;13:1072948. doi: 10.3389/fgene.2022.1072948. eCollection 2022.


DOI:10.3389/fgene.2022.1072948
PMID:36685841
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9852729/
Abstract

Osteoporosis (OP) is a severe systemic bone metabolic disease that occurs worldwide. During the coronavirus pandemic, prioritization of urgent services and delay of elective care attenuated routine screening and monitoring of OP patients. There is an urgent need for novel and effective screening diagnostic biomarkers that require minimal technical and time investments. Several studies have indicated that N6-methyladenosine (m6A) regulators play essential roles in metabolic diseases, including OP. The aim of this study was to identify key m6A regulators as biomarkers of OP through gene expression data analysis and experimental verification. GSE56815 dataset was served as the training dataset for 40 women with high bone mineral density (BMD) and 40 women with low BMD. The expression levels of 14 major m6A regulators were analyzed to screen for differentially expressed m6A regulators in the two groups. The impact of m6A modification on bone metabolism microenvironment characteristics was explored, including osteoblast-related and osteoclast-related gene sets. Most m6A regulators and bone metabolism-related gene sets were dysregulated in the low-BMD samples, and their relationship was also tightly linked. In addition, consensus cluster analysis was performed, and two distinct m6A modification patterns were identified in the low-BMD samples. Subsequently, by univariate and multivariate logistic regression analyses, we identified four key m6A regulators, namely, , , , and . We built a diagnostic model based on the four m6A regulators. and were protective factors, whereas and were risk factors, and the ROC curve and test dataset validated that this model had moderate accuracy in distinguishing high- and low-BMD samples. Furthermore, a regulatory network was constructed of the four hub m6A regulators and 26 m6A target bone metabolism-related genes, which enhanced our understanding of the regulatory mechanisms of m6A modification in OP. Finally, the expression of the four key m6A regulators was validated and , which is consistent with the bioinformatic analysis results. Our findings identified four key m6A regulators that are essential for bone metabolism and have specific diagnostic value in OP. These modules could be used as biomarkers of OP in the future.

摘要

骨质疏松症(OP)是一种在全球范围内发生的严重全身性骨代谢疾病。在新冠疫情期间,紧急服务的优先安排和择期护理的延迟削弱了对OP患者的常规筛查和监测。迫切需要新型且有效的筛查诊断生物标志物,其所需的技术和时间投入最少。多项研究表明,N6-甲基腺苷(m6A)调节剂在包括OP在内的代谢性疾病中起重要作用。本研究的目的是通过基因表达数据分析和实验验证,确定关键的m6A调节剂作为OP的生物标志物。GSE56815数据集用作40名高骨密度(BMD)女性和40名低BMD女性的训练数据集。分析了14种主要m6A调节剂的表达水平,以筛选两组中差异表达的m6A调节剂。探讨了m6A修饰对骨代谢微环境特征的影响,包括成骨细胞相关和破骨细胞相关基因集。大多数m6A调节剂和骨代谢相关基因集在低BMD样本中失调,它们之间的关系也紧密相连。此外,进行了一致性聚类分析,在低BMD样本中确定了两种不同的m6A修饰模式。随后,通过单变量和多变量逻辑回归分析,我们确定了四个关键的m6A调节剂,即 、 、 和 。我们基于这四个m6A调节剂建立了一个诊断模型。 和 是保护因素,而 和 是风险因素,ROC曲线和测试数据集验证了该模型在区分高BMD和低BMD样本方面具有中等准确性。此外,构建了一个由四个核心m6A调节剂和26个m6A靶标骨代谢相关基因组成的调控网络,这加深了我们对OP中m6A修饰调控机制的理解。最后,在 和 中验证了四个关键m6A调节剂的表达,这与生物信息学分析结果一致。我们的研究结果确定了四个对骨代谢至关重要且在OP中具有特定诊断价值的关键m6A调节剂。这些模块未来可用作OP的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/9e8220398505/fgene-13-1072948-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/1d25aceeb767/fgene-13-1072948-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/5c3175d9064f/fgene-13-1072948-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/e83c78d86b29/fgene-13-1072948-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/d7718c3454f8/fgene-13-1072948-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/eb9cd93ef416/fgene-13-1072948-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/8fc38671582e/fgene-13-1072948-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/0921f99fff5c/fgene-13-1072948-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/177de2d74438/fgene-13-1072948-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/9e8220398505/fgene-13-1072948-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/1d25aceeb767/fgene-13-1072948-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/5c3175d9064f/fgene-13-1072948-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/e83c78d86b29/fgene-13-1072948-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/d7718c3454f8/fgene-13-1072948-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/eb9cd93ef416/fgene-13-1072948-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/8fc38671582e/fgene-13-1072948-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/0921f99fff5c/fgene-13-1072948-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/177de2d74438/fgene-13-1072948-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc7/9852729/9e8220398505/fgene-13-1072948-g009.jpg

相似文献

[1]
Identification and experimental validation of key m6A modification regulators as potential biomarkers of osteoporosis.

Front Genet. 2023-1-6

[2]
Comprehensive analysis of the m6A-related molecular patterns and diagnostic biomarkers in osteoporosis.

Front Endocrinol (Lausanne). 2022

[3]
Characteristics of n6-methyladenosine (m6A) regulators and role of FTO/TNC in scleroderma.

Gene. 2024-2-5

[4]
Landscape analysis of m6A modification regulators related biological functions and immune characteristics in myasthenia gravis.

J Transl Med. 2023-3-2

[5]
Characterization of ligamentum flavum hypertrophy based on m6A RNA methylation modification and the immune microenvironment.

Am J Transl Res. 2022-12-15

[6]
Bioinformatics identification and experimental validation of m6A-related diagnostic biomarkers in the subtype classification of blood monocytes from postmenopausal osteoporosis patients.

Front Endocrinol (Lausanne). 2023

[7]
RNA N6-methyladenosine demethylase FTO promotes osteoporosis through demethylating Runx2 mRNA and inhibiting osteogenic differentiation.

Aging (Albany NY). 2021-9-8

[8]
Significance of RNA N6-methyladenosine regulators in the diagnosis and subtype classification of coronary heart disease using the Gene Expression Omnibus database.

Front Cardiovasc Med. 2023-10-19

[9]
N6-Methyladenosine RNA modification in cerebrospinal fluid as a novel potential diagnostic biomarker for progressive multiple sclerosis.

J Transl Med. 2021-7-22

[10]
Molecular subtype identification and predictive power of N6-methyladenosine regulator in unexplained recurrent pregnancy loss.

Front Genet. 2022-9-2

引用本文的文献

[1]
Unraveling the Role of N6-Methylation Modification: From Bone Biology to Osteoporosis.

Int J Med Sci. 2025-5-8

[2]
FTO-associated osteoclastogenesis promotes alveolar bone resorption in apical periodontitis male rat via the HK1/USP14/RANK pathway.

Nat Commun. 2025-2-11

[3]
Epigenetic Mechanisms in Osteoporosis: Exploring the Power of mA RNA Modification.

J Cell Mol Med. 2025-1

[4]
A Machine Learning Framework for Screening Plasma Cell-Associated Feature Genes to Estimate Osteoporosis Risk and Treatment Vulnerability.

Biochem Genet. 2024-6-19

[5]
Recent advances of m6A methylation in skeletal system disease.

J Transl Med. 2024-2-14

本文引用的文献

[1]
Circ-CTNNB1 drives aerobic glycolysis and osteosarcoma progression via m6A modification through interacting with RBM15.

Cell Prolif. 2023-1

[2]
METTL16 exerts an mA-independent function to facilitate translation and tumorigenesis.

Nat Cell Biol. 2022-2

[3]
The role of m6A RNA methylation in cancer metabolism.

Mol Cancer. 2022-1-12

[4]
m6A-Mediated Tumor Invasion and Methylation Modification in Breast Cancer Microenvironment.

J Oncol. 2021-10-27

[5]
RNA N6-methyladenosine demethylase FTO promotes osteoporosis through demethylating Runx2 mRNA and inhibiting osteogenic differentiation.

Aging (Albany NY). 2021-9-8

[6]
Comprehensive analyses of m6A regulators and interactive coding and non-coding RNAs across 32 cancer types.

Mol Cancer. 2021-4-13

[7]
m6A regulator-mediated RNA methylation modification patterns are involved in immune microenvironment regulation of periodontitis.

J Cell Mol Med. 2021-4

[8]
N6-methyladenosine (m6A)-mediated messenger RNA signatures and the tumor immune microenvironment can predict the prognosis of hepatocellular carcinoma.

Ann Transl Med. 2021-1

[9]
Inhibitory Effect of Cudratrixanthone U on RANKL-Induced Osteoclast Differentiation and Function in Macrophages and BMM Cells.

Front Pharmacol. 2020-8-5

[10]
Both aerobic glycolysis and mitochondrial respiration are required for osteoclast differentiation.

FASEB J. 2020-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索