Suppr超能文献

基于 m6A 的生物信息学鉴定与实验验证在绝经后骨质疏松患者外周血单核细胞亚型分类中的诊断生物标志物

Bioinformatics identification and experimental validation of m6A-related diagnostic biomarkers in the subtype classification of blood monocytes from postmenopausal osteoporosis patients.

机构信息

Guangzhou University of Chinese Medicine, Guangzhou, China.

Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.

出版信息

Front Endocrinol (Lausanne). 2023 Mar 8;14:990078. doi: 10.3389/fendo.2023.990078. eCollection 2023.

Abstract

BACKGROUND

Postmenopausal osteoporosis (PMOP) is a common bone disorder. Existing study has confirmed the role of exosome in regulating RNA N6-methyladenosine (m6A) methylation as therapies in osteoporosis. However, it still stays unclear on the roles of m6A modulators derived from serum exosome in PMOP. A comprehensive evaluation on the roles of m6A modulators in the diagnostic biomarkers and subtype identification of PMOP on the basis of GSE56815 and GSE2208 datasets was carried out to investigate the molecular mechanisms of m6A modulators in PMOP.

METHODS

We carried out a series of bioinformatics analyses including difference analysis to identify significant m6A modulators, m6A model construction of random forest, support vector machine and nomogram, m6A subtype consensus clustering, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between different m6A patterns, principal component analysis, and single sample gene set enrichment analysis (ssGSEA) for evaluation of immune cell infiltration, experimental validation of significant m6A modulators by real-time quantitative polymerase chain reaction (RT-qPCR), etc.

RESULTS

In the current study, we authenticated 7 significant m6A modulators difference analysis between normal and PMOP patients from GSE56815 and GSE2208 datasets. In order to predict the risk of PMOP, we adopted random forest model to identify 7 diagnostic m6A modulators, including FTO, FMR1, YTHDC2, HNRNPC, RBM15, RBM15B and WTAP. Then we selected the 7 diagnostic m6A modulators to construct a nomogram model, which could provide benefit with patients according to our subsequent decision curve analysis. We classified PMOP patients into 2 m6A subtypes (clusterA and clusterB) on the basis of the significant m6A modulators a consensus clustering approach. In addition, principal component analysis was utilized to evaluate the m6A score of each sample for quantification of the m6A subgroups. The m6A scores of patients in clusterB were higher than those of patients in clusterA. Moreover, we observed that the patients in clusterA had close correlation with immature B cell and gamma delta T cell immunity while clusterB was linked to monocyte, neutrophil, CD56dim natural killer cell, and regulatory T cell immunity, which has close connection with osteoclast differentiation. Notably, m6A modulators detected by RT-qPCR showed generally consistent expression levels with the bioinformatics results.

CONCLUSION

In general, m6A modulators exert integral function in the pathological process of PMOP. Our study of m6A patterns may provide diagnostic biomarkers and immunotherapeutic strategies for future PMOP treatment.

摘要

背景

绝经后骨质疏松症(PMOP)是一种常见的骨骼疾病。现有研究证实,外泌体在调节 RNA N6-甲基腺苷(m6A)甲基化作为骨质疏松症的治疗方法中发挥作用。然而,m6A 调节剂在 PMOP 中的作用仍不清楚。本研究基于 GSE56815 和 GSE2208 数据集,综合评估 m6A 调节剂在 PMOP 的诊断生物标志物和亚型鉴定中的作用,以探讨 m6A 调节剂在 PMOP 中的分子机制。

方法

我们进行了一系列生物信息学分析,包括差异分析以鉴定显著的 m6A 调节剂、随机森林、支持向量机和列线图的 m6A 模型构建、差异表达基因(DEGs)之间的 m6A 亚型共识聚类、GO 和 KEGG 富集分析、主成分分析和单样本基因集富集分析(ssGSEA)评估免疫细胞浸润、实时定量聚合酶链反应(RT-qPCR)验证显著的 m6A 调节剂等。

结果

在本研究中,我们从 GSE56815 和 GSE2208 数据集鉴定了 7 个正常和 PMOP 患者之间的显著 m6A 调节剂差异分析。为了预测 PMOP 的风险,我们采用随机森林模型来鉴定 7 个诊断性 m6A 调节剂,包括 FTO、FMR1、YTHDC2、HNRNPC、RBM15、RBM15B 和 WTAP。然后,我们选择了 7 个诊断性 m6A 调节剂来构建列线图模型,根据我们随后的决策曲线分析,可以为患者提供获益。我们基于显著的 m6A 调节剂使用共识聚类方法将 PMOP 患者分为 2 个 m6A 亚型(clusterA 和 clusterB)。此外,我们利用主成分分析来评估每个样本的 m6A 分数,以量化 m6A 亚组。clusterB 患者的 m6A 分数高于 clusterA 患者的 m6A 分数。此外,我们观察到 clusterA 患者与未成熟 B 细胞和γδ T 细胞免疫密切相关,而 clusterB 与单核细胞、中性粒细胞、CD56dim 自然杀伤细胞和调节性 T 细胞免疫有关,与破骨细胞分化密切相关。值得注意的是,通过 RT-qPCR 检测到的 m6A 调节剂的表达水平与生物信息学结果总体上一致。

结论

总之,m6A 调节剂在 PMOP 的病理过程中发挥整体功能。我们对 m6A 模式的研究可能为未来 PMOP 治疗提供诊断生物标志物和免疫治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d979/10031099/dc8c829b22f0/fendo-14-990078-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验