Suppr超能文献

利用SOLOv2模型检测复杂环境中家禽的热应激。

Leveraging SOLOv2 model to detect heat stress of poultry in complex environments.

作者信息

Yu Zhenwei, Liu Li, Jiao Hongchao, Chen Jingjing, Chen Zheqi, Song Zhanhua, Lin Hai, Tian Fuyang

机构信息

College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, China.

Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.

出版信息

Front Vet Sci. 2023 Jan 6;9:1062559. doi: 10.3389/fvets.2022.1062559. eCollection 2022.

Abstract

Heat stress is one of the most important environmental stressors facing poultry production. The presence of heat stress will reduce the antioxidant capacity and immunity of poultry, thereby seriously affecting the health and performance of poultry. The paper proposes an improved FPN-DenseNet-SOLO model for poultry heat stress state detection. The model uses Efficient Channel Attention (ECA) and DropBlock regularization to optimize the DenseNet-169 network to enhance the extraction of poultry heat stress features and suppress the extraction of invalid background features. The model takes the SOLOv2 model as the main frame, and uses the optimized DenseNet-169 as the backbone network to integrate the Feature Pyramid Network to detect and segment instances on the semantic branch and mask branch. In the validation phase, the performance of FPN-DenseNet-SOLO was tested with a test set consisting of 12,740 images of poultry heat stress and normal state, and it was compared with commonly used object detection models (Mask R CNN, Faster RCNN and SOLOv2 model). The results showed that when the DenseNet-169 network lacked the ECA module and the DropBlock regularization module, the original model recognition accuracy was 0.884; when the ECA module was introduced, the model's recognition accuracy improved to 0.919. Not only that, the recall, AP0.5, AP0.75 and mean average precision of the FPN-DenseNet-SOLO model on the test set were all higher than other networks. The recall is 0.954, which is 15, 8.8, and 4.2% higher than the recall of Mask R CNN, Faster R CNN and SOLOv2, respectively. Therefore, the study can achieve accurate segmentation of poultry under normal and heat stress conditions, and provide technical support for the precise breeding of poultry.

摘要

热应激是家禽生产面临的最重要的环境应激源之一。热应激的存在会降低家禽的抗氧化能力和免疫力,从而严重影响家禽的健康和生产性能。本文提出了一种用于家禽热应激状态检测的改进型FPN-DenseNet-SOLO模型。该模型使用高效通道注意力(ECA)和DropBlock正则化来优化DenseNet-169网络,以增强对家禽热应激特征的提取并抑制无效背景特征的提取。该模型以SOLOv2模型为主体框架,并使用优化后的DenseNet-169作为骨干网络,集成特征金字塔网络,在语义分支和掩码分支上检测和分割实例。在验证阶段,使用由12740张家禽热应激和正常状态图像组成的测试集对FPN-DenseNet-SOLO的性能进行了测试,并将其与常用的目标检测模型(Mask R CNN、Faster RCNN和SOLOv2模型)进行了比较。结果表明,当DenseNet-169网络缺少ECA模块和DropBlock正则化模块时,原模型识别准确率为0.884;引入ECA模块后,模型的识别准确率提高到了0.919。不仅如此,FPN-DenseNet-SOLO模型在测试集上的召回率、AP0.5、AP0.75和平均精度均值均高于其他网络。召回率为0.954,分别比Mask R CNN、Faster R CNN和SOLOv2的召回率高15%、8.8%和4.2%。因此,该研究能够实现正常和热应激条件下家禽的精确分割,为家禽精准育种提供技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d858/9853182/90af77b9c5cd/fvets-09-1062559-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验