Suppr超能文献

一种用于农场无人机航测图像复杂元素的改进实例分割方法。

An Improved Instance Segmentation Method for Complex Elements of Farm UAV Aerial Survey Images.

作者信息

Lv Feixiang, Zhang Taihong, Zhao Yunjie, Yao Zhixin, Cao Xinyu

机构信息

School of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China.

Ministry of Education Engineering, Research Center for Intelligent Agriculture, Urumqi 830052, China.

出版信息

Sensors (Basel). 2024 Sep 15;24(18):5990. doi: 10.3390/s24185990.

Abstract

Farm aerial survey layers can assist in unmanned farm operations, such as planning paths and early warnings. To address the inefficiencies and high costs associated with traditional layer construction, this study proposes a high-precision instance segmentation algorithm based on SparseInst. Considering the structural characteristics of farm elements, this study introduces a multi-scale attention module (MSA) that leverages the properties of atrous convolution to expand the sensory field. It enhances spatial and channel feature weights, effectively improving segmentation accuracy for large-scale and complex targets in the farm through three parallel dense connections. A bottom-up aggregation path is added to the feature pyramid fusion network, enhancing the model's ability to perceive complex targets such as mechanized trails in farms. Coordinate attention blocks (CAs) are incorporated into the neck to capture richer contextual semantic information, enhancing farm aerial imagery scene recognition accuracy. To assess the proposed method, we compare it against existing mainstream object segmentation models, including the Mask R-CNN, Cascade-Mask, SOLOv2, and Condinst algorithms. The experimental results show that the improved model proposed in this study can be adapted to segment various complex targets in farms. The accuracy of the improved SparseInst model greatly exceeds that of Mask R-CNN and Cascade-Mask and is 10.8 and 12.8 percentage points better than the average accuracy of SOLOv2 and Condinst, respectively, with the smallest number of model parameters. The results show that the model can be used for real-time segmentation of targets under complex farm conditions.

摘要

农田航空测量图层可助力无人农场作业,如规划路径和早期预警。为解决传统图层构建效率低下和成本高昂的问题,本研究提出一种基于SparseInst的高精度实例分割算法。考虑到农田元素的结构特征,本研究引入了多尺度注意力模块(MSA),该模块利用空洞卷积的特性来扩大感受野。它增强了空间和通道特征权重,通过三个并行密集连接有效提高了农田中大规模复杂目标的分割精度。在特征金字塔融合网络中添加了自底向上的聚合路径,增强了模型感知农田中诸如机械化小道等复杂目标的能力。在颈部融入坐标注意力模块(CAs)以捕捉更丰富的上下文语义信息,提高农田航空影像场景识别精度。为评估所提方法,我们将其与现有的主流目标分割模型进行比较,包括Mask R-CNN、Cascade-Mask、SOLOv2和Condinst算法。实验结果表明,本研究提出的改进模型能够适应分割农田中的各种复杂目标。改进后的SparseInst模型的准确率大大超过Mask R-CNN和Cascade-Mask,分别比SOLOv2和Condinst的平均准确率高出10.8和12.8个百分点,且模型参数数量最少。结果表明,该模型可用于复杂农田条件下目标的实时分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验