Suppr超能文献

骨关节炎,新瓶装旧酒!

Osteoarthritis, an old wine in a new bottle!

作者信息

Muthu Sathish

机构信息

Department of Orthopaedics, Government Medical College, Dindigul 624001, India.

Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India.

出版信息

World J Orthop. 2023 Jan 18;14(1):1-5. doi: 10.5312/wjo.v14.i1.1.

Abstract

Osteoarthritis (OA) is the most common form of arthritis that has a major impact on patient morbidity and health care services. Despite its prevalence and impact, we do not have any effective management strategy to prevent or control their manifestations. Several decades of pharmacological development have failed to deliver a disease-modifying solution to OA. This editorial article outlines the lacunae in the research efforts of the past, the challenges that we are facing at present, and the exciting opportunities we have in the future for the management of OA. OA research has to be made more personalized concerning the phenotypic and endotypic disease variants. To begin with, robust disease classification criteria need to be defined for early OA, and biomarkers to detect such early diseases to aid in patient stratification. We also need to refine our clinical research design to make them more objective to meet the demands of the patient and the regulatory agencies. Embracing the current technologies such as artificial intelligence along with the use of genomic profiling from the omics platforms, the future of OA is more promising in developing appropriate management of OA.

摘要

骨关节炎(OA)是最常见的关节炎形式,对患者的发病率和医疗服务有重大影响。尽管其患病率高且影响大,但我们尚无任何有效的管理策略来预防或控制其症状表现。几十年来的药物研发未能为骨关节炎提供一种改善病情的解决方案。这篇社论文章概述了过去研究工作中的不足、我们目前面临的挑战以及未来在骨关节炎管理方面所拥有的令人振奋的机遇。关于表型和内型疾病变体,骨关节炎研究必须更加个性化。首先,需要为早期骨关节炎定义强有力的疾病分类标准,并确定用于检测此类早期疾病以帮助患者分层的生物标志物。我们还需要完善临床研究设计,使其更客观,以满足患者和监管机构的要求。通过采用人工智能等当前技术以及利用组学平台的基因组分析,骨关节炎在制定适当管理方案方面的未来更具前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4852/9850792/13e32cea5b24/WJO-14-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验