Suppr超能文献

在医疗资源有限的情况下预测糖尿病视网膜病变的模型:一项多中心诊断研究。

Predictive model for diabetic retinopathy under limited medical resources: A multicenter diagnostic study.

机构信息

Department of Endocrinology and Metabolism, Chengdu First People's Hospital, Chengdu, China.

Operation Management Office, Affiliated Banan Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Front Endocrinol (Lausanne). 2023 Jan 5;13:1099302. doi: 10.3389/fendo.2022.1099302. eCollection 2022.

Abstract

BACKGROUND

Comprehensive eye examinations for diabetic retinopathy is poorly implemented in medically underserved areas. There is a critical need for a widely available and economical tool to aid patient selection for priority retinal screening. We investigated the possibility of a predictive model for retinopathy identification using simple parameters.

METHODS

Clinical data were retrospectively collected from 4, 159 patients with diabetes admitted to five tertiary hospitals. Independent predictors were identified by univariate analysis and least absolute shrinkage and selection operator (LASSO) regression, and a nomogram was developed based on a multivariate logistic regression model. The validity and clinical practicality of this nomogram were assessed using concordance index (C-index), area under the receiver operating characteristic curve (AUROC), calibration curves, decision curve analysis (DCA), and clinical impact curves (CIC).

RESULTS

The predictive factors in the multivariate model included the duration of diabetes, history of hypertension, and cardiovascular disease. The three-variable model displayed medium prediction ability with an AUROC of 0.722 (95%CI 0.696-0.748) in the training set, 0.715 (95%CI 0.670-0.754) in the internal set, and 0.703 (95%CI 0.552-0.853) in the external dataset. DCA showed that the threshold probability of DR in diabetic patients was 17-55% according to the nomogram, and CIC also showed that the nomogram could be applied clinically if the risk threshold exceeded 30%. An operation interface on a webpage (https://cqmuxss.shinyapps.io/dr_tjj/) was built to improve the clinical utility of the nomogram.

CONCLUSIONS

The predictive model developed based on a minimal amount of clinical data available to diabetic patients with restricted medical resources could help primary healthcare practitioners promptly identify potential retinopathy.

摘要

背景

在医疗资源匮乏地区,全面的糖尿病视网膜病变眼部检查执行情况较差。因此,迫切需要一种广泛可用且经济实惠的工具,以帮助患者选择进行优先视网膜筛查。我们研究了使用简单参数来预测视网膜病变的可能性。

方法

回顾性收集了来自五所三级医院的 4159 名糖尿病患者的临床数据。通过单因素分析和最小绝对收缩和选择算子(LASSO)回归确定独立预测因子,并基于多变量逻辑回归模型开发了一个列线图。使用一致性指数(C-index)、接受者操作特征曲线下面积(AUROC)、校准曲线、决策曲线分析(DCA)和临床影响曲线(CIC)评估该列线图的有效性和临床实用性。

结果

多变量模型中的预测因素包括糖尿病病程、高血压病史和心血管疾病史。三变量模型在训练集、内部集和外部数据集的 AUC 值分别为 0.722(95%CI 0.696-0.748)、0.715(95%CI 0.670-0.754)和 0.703(95%CI 0.552-0.853),具有中等预测能力。DCA 显示,根据该列线图,糖尿病患者 DR 的阈值概率为 17-55%,CIC 也显示,如果风险阈值超过 30%,该列线图可在临床上应用。为了提高列线图的临床实用性,我们构建了一个网页上的操作界面(https://cqmuxss.shinyapps.io/dr_tjj/)。

结论

该列线图基于有限的临床数据,可帮助医疗资源受限的基层医疗保健从业者快速识别潜在的视网膜病变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd0f/9849672/a4470120fd3a/fendo-13-1099302-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验