Mbrouk Omar, Fawzy M, El-Shafey H M, Saif M, Abdel Mottaleb M S A, Hafez H
Nano-Photochemistry and Its Environmental Applications Laboratory, Environmental Studies, and Research Institute (ESRI), University of Sadat City (USC, ) P. O. 32897 Sadat City 23897 Menofia Egypt
Chemistry Department, Faculty of Education, Ain Shams University Roxy Cairo Egypt.
RSC Adv. 2023 Jan 3;13(2):770-780. doi: 10.1039/d2ra07442g.
Solar-to-fuel conversion is a novel clean energy approach that has gained the interest of many researchers. Solar-driven photocatalysts have become essential to providing valuable fuel gases such as methane and hydrogen. Solar energy has emerged as a renewable, abundant energy source that can efficiently drive photochemical reactions through plasmonic photocatalysis. As a capping agent, orange peel extract was used in this study in a microwave-assisted green method to incorporate titanium dioxide with distinct amounts (3, 5, and 7 wt%) from Pd-plasmonic nanoparticles (2-5 nm). The leading role for plasmonic nanoparticles made from Pd-metal is enhancing the photocatalyst's ability to capture visible light, improving its performance. X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Brunauer, Emmett, and Teller (BET) surface area analysis, and UV-vis DRS analyses have investigated the obtained plasmonic photocatalysts' crystallographic, morphological, and optical characteristics. The UV-vis absorption spectra demonstrated the visible light absorption capacity attributed to the localized surface plasmonic resonance (LSPR) behavior of the newly formed nanoplasmonic photocatalysts. The generated Pd-TiO nanomaterials' photocatalytic activity has been examined and evaluated for combustible gas production, including the formation of CH and H from the photocatalytic degradation of Reactive Yellow 15 (RY) during a deoxygenated photoreaction in a homemade solar photobiogas reactor.
太阳能到燃料的转化是一种新颖的清洁能源方法,已引起众多研究人员的关注。太阳能驱动的光催化剂对于提供诸如甲烷和氢气等有价值的燃料气体至关重要。太阳能已成为一种可再生的丰富能源,可通过等离子体光催化有效地驱动光化学反应。在本研究中,采用微波辅助绿色方法,使用橙皮提取物作为封端剂,将不同含量(3%、5%和7%重量)的钯等离子体纳米颗粒(2 - 5纳米)与二氧化钛结合。由钯金属制成的等离子体纳米颗粒的主要作用是增强光催化剂捕获可见光的能力,从而提高其性能。通过X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)、布鲁诺尔、埃米特和泰勒(BET)表面积分析以及紫外可见漫反射光谱(UV-vis DRS)分析,研究了所得等离子体光催化剂的晶体结构、形态和光学特性。紫外可见吸收光谱证明了新形成的纳米等离子体光催化剂的局域表面等离子体共振(LSPR)行为所导致的可见光吸收能力。在自制的太阳能光生物气反应器中进行的脱氧光反应过程中,对生成的钯 - 二氧化钛纳米材料的光催化活性进行了检测和评估,以用于可燃气体生产,包括通过活性黄15(RY)的光催化降解形成CH和H。