Suppr超能文献

通过无损收缩使图形紧凑。

Making graphs compact by lossless contraction.

作者信息

Fan Wenfei, Li Yuanhao, Liu Muyang, Lu Can

机构信息

University of Edinburgh, Edinburgh, UK.

Shenzhen Institute of Computing Sciences, Shenzhen, China.

出版信息

VLDB J. 2023;32(1):49-73. doi: 10.1007/s00778-022-00731-7. Epub 2022 Feb 19.

Abstract

This paper proposes a scheme to reduce big graphs to small graphs. It contracts obsolete parts and regular structures into supernodes. The supernodes carry a synopsis for each query class in use, to abstract key features of the contracted parts for answering queries of . Moreover, for various types of graphs, we identify regular structures to contract. The contraction scheme provides a compact graph representation and prioritizes up-to-date data. Better still, it is generic and lossless. We show that the same contracted graph is able to support multiple query classes at the same time, no matter whether their queries are label based or not, local or non-local. Moreover, existing algorithms for these queries can be readily adapted to compute exact answers by using the synopses when possible and decontracting the supernodes only when necessary. As a proof of concept, we show how to adapt existing algorithms for subgraph isomorphism, triangle counting, shortest distance, connected component and clique decision to contracted graphs. We also provide a bounded incremental contraction algorithm in response to updates, such that its cost is determined by the size of areas affected by the updates alone, not by the entire graphs. We experimentally verify that on average, the contraction scheme reduces graphs by 71.9% and improves the evaluation of these queries by 1.69, 1.44, 1.47, 2.24 and 1.37 times, respectively.

摘要

本文提出了一种将大型图缩减为小型图的方案。它将过时部分和规则结构收缩为超节点。超节点为每个正在使用的查询类携带一个概要,以抽象出收缩部分的关键特征,用于回答查询。此外,对于各种类型的图,我们识别出要收缩的规则结构。该收缩方案提供了一种紧凑的图表示,并对最新数据进行了优先级排序。更妙的是,它是通用且无损的。我们表明,相同的收缩图能够同时支持多个查询类,无论它们的查询是否基于标签、是局部的还是非局部的。此外,现有的针对这些查询的算法可以很容易地进行调整,以便在可能的情况下使用概要计算精确答案,并且仅在必要时对超节点进行解收缩。作为概念验证,我们展示了如何将现有的子图同构、三角形计数、最短距离、连通分量和团决策算法应用于收缩图。我们还提供了一种针对更新的有界增量收缩算法,其成本仅由受更新影响的区域大小决定,而不是由整个图决定。我们通过实验验证,平均而言,收缩方案将图缩减了71.9%,并分别将这些查询的评估速度提高了1.69倍、1.44倍、1.47倍、2.24倍和1.37倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659e/9845199/c914b127a152/778_2022_731_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验