Suppr超能文献

耐连作大豆品种通过改善根际微生物的结构和功能来缓解连作障碍。

Continuous-cropping-tolerant soybean cultivars alleviate continuous cropping obstacles by improving structure and function of rhizosphere microorganisms.

作者信息

Liu Wenbo, Wang Nan, Yao Xingdong, He Dexin, Sun Hexiang, Ao Xue, Wang Haiying, Zhang Huijun, St Martin Steven, Xie Futi, Wang Jingkuan

机构信息

Soybean Research Institute, Shenyang Agricultural University, Shenyang, China.

Postdoctoral Station of Agricultural Resources and Environment, Land and Environment College, Shenyang Agricultural University, Shenyang, China.

出版信息

Front Microbiol. 2023 Jan 4;13:1048747. doi: 10.3389/fmicb.2022.1048747. eCollection 2022.

Abstract

INTRODUCTION

Soybean continuous cropping will change soil microorganisms and cause continuous cropping obstacles, resulting in a significant yield decline. Different soybean cultivars have different tolerances to continuous cropping, but the relationship between continuous cropping tolerance and soil microorganisms is not clear.

METHODS

Two soybean cultivars with different tolerances to continuous cropping were used to study the effects of continuous cropping on soil physical and chemical properties, nitrogen and phosphorus cyclic enzyme activities, rhizosphere soil microbial community and function.

RESULTS

The results showed that the yield reduction rate of a continuous-cropping-tolerant cultivar (L14) was lower than that of a continuous-cropping-sensitive cultivar (L10) under continuous cropping. At R1 and R6 growth stages, soil nutrient content (NH -N, NO -N, AP, DOM, TK, and pH), nitrogen cycling enzyme (URE, NAG, LAP) activities, phosphorus cycling enzyme (ALP, NPA, ACP) activities, copy numbers of nitrogen functional genes (, , , ) and phosphorus functional genes (, ) in L14 were higher than those in L10. Soybean cultivar was an important factor affecting the structure and functional structure of bacterial community under continuous cropping. The relative abundances of , , and with L14 were significantly higher than those of L10. The complexity of the soil bacterial community co-occurrence network in L14 was higher than that in L10.

DISCUSSION

The continuous-cropping-tolerant soybean cultivar recruited more beneficial bacteria, changed the structure and function of microbial community, improved soil nitrogen and phosphorus cycling, and reduced the impact of continuous cropping obstacles on grain yield.

摘要

引言

大豆连作会改变土壤微生物群落并导致连作障碍,从而使产量显著下降。不同大豆品种对连作的耐受性不同,但连作耐受性与土壤微生物之间的关系尚不清楚。

方法

选用两个对连作耐受性不同的大豆品种,研究连作对土壤理化性质、氮磷循环酶活性、根际土壤微生物群落及功能的影响。

结果

结果表明,在连作条件下,耐连作品种(L14)的减产率低于连作敏感品种(L10)。在R1和R6生长阶段,L14的土壤养分含量(NH₄⁺-N、NO₃⁻-N、有效磷、溶解性有机碳、全钾和pH值)、氮循环酶(脲酶、N-乙酰-β-葡萄糖苷酶、亮氨酸氨肽酶)活性、磷循环酶(碱性磷酸酶、核酸磷酸酶、酸性磷酸酶)活性、氮功能基因(nirS、nirK、nosZ、amoA)和磷功能基因(phoD、pqqC)的拷贝数均高于L10。大豆品种是影响连作条件下细菌群落结构和功能结构的重要因素。L14中,芽孢杆菌属、贪铜菌属、鞘脂单胞菌属和假单胞菌属的相对丰度显著高于L10。L14土壤细菌群落共现网络的复杂性高于L10。

讨论

耐连作大豆品种招募了更多有益细菌,改变了微生物群落的结构和功能,改善了土壤氮磷循环,减轻了连作障碍对籽粒产量的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49a0/9846356/6c64af3992ad/fmicb-13-1048747-g001.jpg

相似文献

4
Soil microbial community assembly and stability are associated with potato ( L.) fitness under continuous cropping regime.
Front Plant Sci. 2022 Oct 3;13:1000045. doi: 10.3389/fpls.2022.1000045. eCollection 2022.
5
Manipulating rhizosphere microorganisms to improve crop yield in saline-alkali soil: a study on soybean growth and development.
Front Microbiol. 2023 Sep 20;14:1233351. doi: 10.3389/fmicb.2023.1233351. eCollection 2023.
7
Chitin amendments eliminate the negative impacts of continuous cropping obstacles on soil properties and microbial assemblage.
Front Plant Sci. 2022 Nov 24;13:1067618. doi: 10.3389/fpls.2022.1067618. eCollection 2022.
9
Soil potentials to resist continuous cropping obstacle: Three field cases.
Environ Res. 2021 Sep;200:111319. doi: 10.1016/j.envres.2021.111319. Epub 2021 May 28.

本文引用的文献

1
Distinct Patterns of Rhizosphere Microbiota Associated With Rice Genotypes Differing in Aluminum Tolerance in an Acid Sulfate Soil.
Front Microbiol. 2022 Jun 17;13:933722. doi: 10.3389/fmicb.2022.933722. eCollection 2022.
2
Polysaccharide degradation by the Bacteroidetes: mechanisms and nomenclature.
Environ Microbiol Rep. 2021 Oct;13(5):559-581. doi: 10.1111/1758-2229.12980. Epub 2021 Jun 13.
4
Unravelling the Role of Rhizospheric Plant-Microbe Synergy in Phytoremediation: A Genomic Perspective.
Curr Genomics. 2020 Aug;21(5):334-342. doi: 10.2174/1389202921999200623133240.
5
Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment.
ISME J. 2021 Feb;15(2):550-561. doi: 10.1038/s41396-020-00796-8. Epub 2020 Oct 7.
6
Plant species identity drives soil microbial community structures that persist under a following crop.
Ecol Evol. 2020 Jul 23;10(16):8652-8668. doi: 10.1002/ece3.6560. eCollection 2020 Aug.
8
Root exudates: from plant to rhizosphere and beyond.
Plant Cell Rep. 2020 Jan;39(1):3-17. doi: 10.1007/s00299-019-02447-5. Epub 2019 Jul 25.
9
Response of Soil Fungal Community Structure to Long-Term Continuous Soybean Cropping.
Front Microbiol. 2019 Jan 9;9:3316. doi: 10.3389/fmicb.2018.03316. eCollection 2018.
10
Network Analyses Can Advance Above-Belowground Ecology.
Trends Plant Sci. 2018 Sep;23(9):759-768. doi: 10.1016/j.tplants.2018.06.009. Epub 2018 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验