State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
ISME J. 2021 Feb;15(2):550-561. doi: 10.1038/s41396-020-00796-8. Epub 2020 Oct 7.
Cropping systems have fertilized soils for decades with undetermined consequences for the productivity and functioning of terrestrial ecosystems. One of the critical unknowns is the role of soil biodiversity in controlling crop production after decades of fertilization. This knowledge gap limits our capacity to assess how changes in soil biodiversity could alter crop production and soil health in changing environments. Here, we used multitrophic ecological networks to investigate the importance of soil biodiversity, in particular, the biodiversity of key-stone taxa in controlling soil functioning and wheat production in a 35-year field fertilization experiment. We found strong and positive associations between soil functional genes, crop production and the biodiversity of key-stone phylotypes; soils supporting a larger number of key-stone nematode, bacteria and fungi phylotypes yielded the highest wheat production. These key-stone phylotypes were also positively associated with plant growth (phototrophic bacteria, nitrogen fixers) and multiple functional genes related to nutrient cycling. The retrieved information on the genomes clustered with key-stone bacterial phylotypes indicated that the key-stone taxa had higher gene copies of oxidoreductases (participating most biogeochemical cycles of ecosystems and linking to microbial energetics) and 71 essential functional genes associated with carbon, nitrogen, phosphorus, and sulfur cycling. Altogether, our work highlights the fundamental role of the biodiversity of key-stone phylotypes in maintaining soil functioning and crop production after several decades of fertilization, and provides a list of key-stone phylotypes linking to crop production and soil nutrient cycling, which could give science-based guidance for sustainable food production.
几十年来,种植制度一直在为土壤施肥,但这对陆地生态系统的生产力和功能产生了何种影响尚不确定。其中一个关键的未知因素是,在经过几十年的施肥后,土壤生物多样性在控制作物产量方面所起的作用。这一知识空白限制了我们评估土壤生物多样性的变化如何改变变化环境中的作物产量和土壤健康的能力。在这里,我们利用多营养层生态网络来研究土壤生物多样性的重要性,特别是关键类群生物多样性在控制土壤功能和小麦产量方面的作用,该研究是在一个为期 35 年的田间施肥实验中进行的。我们发现,土壤功能基因、作物产量和关键类群生物型的生物多样性之间存在强烈而积极的关联;支持更多关键类群线虫、细菌和真菌生物型的土壤产生了最高的小麦产量。这些关键类群生物型还与植物生长(光合细菌、固氮菌)和与养分循环有关的多种功能基因呈正相关。与关键类群细菌生物型聚类的检索到的基因组信息表明,关键类群具有更高的氧化还原酶基因拷贝数(参与大多数生态系统的生物地球化学循环,并与微生物能量学相关联),以及与碳、氮、磷和硫循环相关的 71 个必需功能基因。总之,我们的工作强调了关键类群生物型的生物多样性在几十年施肥后维持土壤功能和作物产量的基本作用,并提供了与作物产量和土壤养分循环相关的关键类群生物型的列表,这可为可持续粮食生产提供基于科学的指导。