Metzler C M
Upjohn Company, Kalamazoo, MI 49001.
J Pharm Sci. 1987 Jul;76(7):565-71. doi: 10.1002/jps.2600760716.
An important part of pharmacokinetic research is fitting models to observed data and estimating the parameters in the model. In general, parameter estimation in pharmacokinetics is a subset of the general problem of nonlinear regression or parameter estimation in nonlinear regression models. The same criteria, algorithms, and software used in other areas of science have been used in pharmacokinetics. Nonlinear modeling is a difficult mathematical and statistical task, often presenting problems. Any proposed new tool is of interest, and extended least squares (ELS) has been suggested as being better than the methods usually used. This suggestion and the evidence supporting it are examined; additional simulations are reported. With the evidence presently available, ELS does not seem to be superior to traditional least squares methods.
药代动力学研究的一个重要部分是将模型与观测数据进行拟合,并估计模型中的参数。一般来说,药代动力学中的参数估计是非线性回归或非线性回归模型中参数估计这一普遍问题的一个子集。在药代动力学中使用了与其他科学领域相同的标准、算法和软件。非线性建模是一项困难的数学和统计任务,常常会出现问题。任何提出的新工具都令人感兴趣,有人提出扩展最小二乘法(ELS)比通常使用的方法更好。本文对这一建议及其支持证据进行了研究,并报告了额外的模拟结果。根据目前可得的证据,ELS似乎并不优于传统的最小二乘法。