Urien S
Laboratoire de Pharmacologie, Faculté de Médecine, Université Paris XII, Créteil, France.
Pharm Res. 1995 Aug;12(8):1225-30. doi: 10.1023/a:1016280430580.
The microcomputer program, MicroPharm-K (MP-K) was developed for pharmacokinetic modeling, including analysis of experimental data and estimation of relevant parameters, and simulation. The intention was to provide a user-friendly, interactive, event-driven program for PC computers.
The data are ascribed to a predefined model from a library including various routes of administration, oral or intra-venous, bolus or infusion, and various compartmental interpretations, 1 to 3. Single and multiple administrations are supported. The program provides initial estimates of the parameters in most cases, and the parameters are then fitted to the model by non linear model fitting using either the Simplex, Evol, Gauss-Newton, Levenberg-Marquardt or Fletcher-Powell algorithms. The non linear model fitting is based on the maximum likelihood method, and the criterion to minimize is either the weighted least squares (Chi 2 criterion) or the extended least squares. Graphical representations of non-fitted or curve-fitted data are immediately available (including log-scale representation), as well as pharmacokinetic typical parameters such as area under the curve, clearance, volumes, time-rate constants, transfer rate constants, etc.
Simulated and experimental data were analysed and the results were similar to those obtained by other programs.
This non linear fitting program has been proved in our laboratory to be a very effective package for pharmacokinetic studies, including estimation and simulation. Because it is easy-to-use and runs on basic computers, the program could also be used for educational purposes.
开发了微机程序MicroPharm-K(MP-K)用于药代动力学建模,包括实验数据分析、相关参数估计及模拟。目的是为个人计算机提供一个用户友好、交互式、事件驱动的程序。
数据被归为来自一个库的预定义模型,该库包括各种给药途径,口服或静脉注射,推注或输注,以及各种房室解释,1至3室。支持单次和多次给药。该程序在大多数情况下提供参数的初始估计值,然后使用单纯形法、进化算法、高斯-牛顿法、列文伯格-马夸尔特法或弗莱彻-鲍威尔算法通过非线性模型拟合将参数拟合到模型中。非线性模型拟合基于最大似然法,最小化的标准是加权最小二乘法(卡方标准)或扩展最小二乘法。未拟合或曲线拟合数据的图形表示(包括对数尺度表示)以及药代动力学典型参数,如曲线下面积、清除率、容积、时间速率常数、转运速率常数等可立即获得。
对模拟和实验数据进行了分析,结果与其他程序获得的结果相似。
在我们实验室中已证明该非线性拟合程序是药代动力学研究(包括估计和模拟)的一个非常有效的软件包。由于它易于使用且可在基本计算机上运行,该程序也可用于教育目的。