Zhang Haikuo, Li Ruhong, Chen Long, Fan Yingzhu, Zhang Hao, Zhang Ruixin, Zheng Lei, Zhang Junbo, Ding Shouhong, Wu Yongjian, Ma Baochen, Zhang Shuoqing, Deng Tao, Chen Lixin, Shen Yanbin, Fan Xiulin
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
Polytechnic Institute, Zhejiang University, Hangzhou, 310027, China.
Angew Chem Int Ed Engl. 2023 Mar 6;62(11):e202218970. doi: 10.1002/anie.202218970. Epub 2023 Feb 6.
Although great progress has been made in new electrolytes for lithium metal batteries (LMBs), the intrinsic relationship between electrolyte composition and cell performance remains unclear due to the lack of valid quantization method. Here, we proposed the concept of negative center of electrostatic potential (NCESP) and Mayer bond order (MBO) to describe solvent capability, which highly relate to solvation structure and oxidation potential, respectively. Based on established principles, the selected electrolyte with 1.7 M LiFSI in methoxytrimethylsilane (MOTMS)/ (trifluoromethyl)trimethylsilane (TFMTMS) shows unique hyperconjugation nature to stabilize both Li anode and high-voltage cathode. The 4.6 V 30 μm Li||4.5 mAh cm lithium cobalt oxide (LCO) (low N/P ratio of 1.3) cell with our electrolyte shows stable cycling with 91 % capacity retention over 200 cycles. The bottom-up design concept of electrolyte opens up a general strategy for advancing high-voltage LMBs.
尽管锂金属电池(LMBs)新型电解质已取得巨大进展,但由于缺乏有效的量化方法,电解质组成与电池性能之间的内在关系仍不明确。在此,我们提出了静电势负中心(NCESP)和迈耶键级(MBO)的概念来描述溶剂化能力,它们分别与溶剂化结构和氧化电位高度相关。基于既定原理,在甲氧基三甲基硅烷(MOTMS)/(三氟甲基)三甲基硅烷(TFMTMS)中含1.7 M LiFSI的所选电解质表现出独特的超共轭性质,可稳定锂负极和高压正极。采用我们的电解质的4.6 V 30 μm锂||4.5 mAh cm锂钴氧化物(LCO)(低N/P比为1.3)电池在200次循环中显示出稳定的循环性能,容量保持率为91%。电解质的自下而上设计概念为推进高压LMBs开辟了一条通用策略。