Suppr超能文献

调整醚类溶剂的末端烷基链以稳定NCM-Li电池中的电极/电解质界面

Tuning the End Alkyl Chain of the Ether Solvent to Stabilize the Electrode/Electrolyte Interfaces in the NCM-Li Battery.

作者信息

Li Zelin, Chen Xinping, Li Wenting, Li Jie, Zhang Yujuan, Lu Lisi, Zhan Chun, Qiu Xinping

机构信息

School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.

出版信息

ACS Appl Mater Interfaces. 2024 May 29;16(21):27429-27438. doi: 10.1021/acsami.4c04178. Epub 2024 May 15.

Abstract

Lithium metal batteries (LMBs) combined with a high-voltage nickel-rich cathode show great potential in meeting the growing need for high energy density. The lack of advanced electrolytes has been a major obstacle in the commercialization of high-voltage lithium metal batteries (LMBs), as these electrolytes need to effectively support both a stable lithium metal anode (LMA) and a high-voltage cathode (>4 V vs Li/Li). In this work, by extending the two terminal methyl groups in DIGDME and TEGDME to -butyl groups, we design a new weakly solvating electrolyte (2 M LIFSI+TEGDBE) that enables the stable cycling of NMC83 (LiNiCoMnO) cathodes. The NMC83 cell exhibits a high and stable Coulombic efficiency (CE) of over 99%, as well as capacity retention of approximately 99.8% after 100 cycles at 0.3 C. X-ray photoelectron spectroscopy analysis (XPS) and high-resolution transmission electron microscope (HRTEM) images revealed that the anion species decomposed first, resulting in the formation of a cathode-electrolyte interface (CEI) film predominantly consisting of decomposition products from the anions on the positive electrode surface. This work links the functional group of solvents with the solvation structure and electrochemical performance of ether-based electrolytes, providing a distinctive sight to design advanced electrolytes for high-energy-density LMBs.

摘要

锂金属电池(LMBs)与高压富镍阴极相结合,在满足对高能量密度日益增长的需求方面显示出巨大潜力。缺乏先进的电解质一直是高压锂金属电池(LMBs)商业化的主要障碍,因为这些电解质需要有效地同时支持稳定的锂金属阳极(LMA)和高压阴极(相对于Li/Li为>4 V)。在这项工作中,通过将DIGDME和TEGDME中的两个末端甲基扩展为丁基,我们设计了一种新型弱溶剂化电解质(2 M LIFSI+TEGDBE),该电解质能够使NMC83(LiNiCoMnO)阴极实现稳定循环。NMC83电池表现出超过99%的高且稳定的库仑效率(CE),以及在0.3 C下循环100次后约99.8%的容量保持率。X射线光电子能谱分析(XPS)和高分辨率透射电子显微镜(HRTEM)图像显示,阴离子物种首先分解,导致在正极表面形成主要由阴离子分解产物组成的阴极-电解质界面(CEI)膜。这项工作将溶剂的官能团与醚基电解质的溶剂化结构和电化学性能联系起来,为设计用于高能量密度LMBs的先进电解质提供了独特的视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验