Li Ruhong, Huang Xiaoteng, Zhang Haikuo, Wang Jinze, Fan Yingzhu, Huang Yiqiang, Liu Jia, Yang Ming, Yu Yuan, Xiao Xuezhang, Tan Yuanzhong, Wu Hao Bin, Fan Liwu, Deng Tao, Chen Lixin, Shen Yanbin, Fan Xiulin
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
Nat Commun. 2025 May 20;16(1):4672. doi: 10.1038/s41467-025-59955-0.
The fundamental interactions and the as-derived microstructures among electrolyte components play a pivotal role in determining the bulk and interfacial properties of the electrolytes. However, the complex structure-property relationships remain elusive, leading to uncontrollable physicochemical characteristics of electrolytes and unsatisfied battery performance. Herein, we propose two interaction motif descriptors to quantify ion-solvent interactions spanning electrostatic to dispersion regimes. These descriptors are highly relevant to salt dissolution, phase miscibility, and electrode-electrolyte interface chemistries. Guided by the principle of minimizing ion-solvent and solvent-solvent interactions while ensuring sufficient salt dissociation, a representative electrolyte, i.e., lithium bis(fluorosulfonyl)imide dissolved in trimethyl methoxysilane and 1,3,5-trifluorobenzene with a molar ratio of 1:2.5:3.0, is designed, which achieves ~99.7% (±0.2%) Li plating/stripping Coulombic efficiency and endows 4.5 V Li||LiCoO with 90% capacity retention after 600 cycles at 0.2 C/0.5 C charge/discharge rate. Notably, Cu||LiNiCoMnO pouch cells with this electrolyte sustain over 100 stable cycles. By establishing quantitative relationships between interaction motifs and electrolyte functionalities, this work provides a universal framework for rational electrolyte design, paving the way for highly reversible lithium metal batteries.
电解质组分之间的基本相互作用及其衍生的微观结构在决定电解质的整体和界面性质方面起着关键作用。然而,复杂的结构-性能关系仍然难以捉摸,导致电解质的物理化学特性无法控制,电池性能也不尽人意。在此,我们提出了两个相互作用基序描述符,以量化从静电到色散区域的离子-溶剂相互作用。这些描述符与盐溶解、相混溶性以及电极-电解质界面化学高度相关。在确保足够的盐解离的同时,以最小化离子-溶剂和溶剂-溶剂相互作用为原则,设计了一种代表性电解质,即双(氟磺酰)亚胺锂溶解在三甲氧基硅烷和1,3,5-三氟苯中,摩尔比为1:2.5:3.0,该电解质实现了约99.7%(±0.2%)的锂电镀/剥离库仑效率,并使4.5V Li||LiCoO在0.2C/0.5C充放电速率下循环600次后容量保持率达到90%。值得注意的是,使用这种电解质的Cu||LiNiCoMnO软包电池可维持超过100次稳定循环。通过建立相互作用基序与电解质功能之间的定量关系,这项工作为合理的电解质设计提供了一个通用框架,为高可逆锂金属电池铺平了道路。