CNR-IOM TASC Laboratory, Area Science Park, 34149Trieste, Italy.
Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172Venice, Italy.
Nano Lett. 2023 Feb 8;23(3):902-907. doi: 10.1021/acs.nanolett.2c04194. Epub 2023 Jan 23.
Magnetic materials exhibiting topological Dirac fermions are attracting significant attention for their promising technological potential in spintronics. In these systems, the combined effect of the spin-orbit coupling and magnetic order enables the realization of novel topological phases with exotic transport properties, including the anomalous Hall effect and magneto-chiral phenomena. Herein, we report experimental signature of topological Dirac antiferromagnetism in TaCoTe via angle-resolved photoelectron spectroscopy and first-principles density functional theory calculations. In particular, we find the existence of spin-orbit coupling-induced gaps at the Fermi level, consistent with the manifestation of a large intrinsic nonlinear Hall conductivity. Remarkably, we find that the latter is extremely sensitive to the orientation of the Néel vector, suggesting TaCoTe as a suitable candidate for the realization of non-volatile spintronic devices with an unprecedented level of intrinsic tunability.
具有拓扑狄拉克费米子的磁性材料因其在自旋电子学中的巨大技术潜力而受到广泛关注。在这些系统中,自旋轨道耦合和磁有序的共同作用实现了具有奇异输运性质的新型拓扑相,包括反常霍尔效应和磁手性现象。在此,我们通过角分辨光电子能谱和第一性原理密度泛函理论计算,报道了 TaCoTe 中拓扑狄拉克反铁磁的实验特征。特别是,我们发现费米能级处存在自旋轨道耦合诱导的能隙,这与大的本征非线性霍尔电导率的表现一致。值得注意的是,我们发现后者对奈尔矢量的方向极为敏感,这表明 TaCoTe 是实现具有前所未有的本征可调性的非易失性自旋电子器件的理想候选材料。