预测中国上海疟疾传播媒介中华按蚊的风险分布。
Prediction of the Risk Distributions for Anopheles sinensis, a Vector for Malaria in Shanghai, China.
机构信息
Fudan University School of Public Health, Shanghai, China.
Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China.
出版信息
Am J Trop Med Hyg. 2023 Jan 23;108(3):599-608. doi: 10.4269/ajtmh.22-0523. Print 2023 Mar 1.
Malaria is a parasitic disease caused by Plasmodium, and Anopheles sinensis is a vector of malaria. Although malaria is no longer indigenous to China, a high risk remains for local transmission of imported malaria. This study aimed to identify the risk distribution of vector An. sinensis and malaria transmission. Using data collected from routine monitoring in Shanghai from 2010 to 2020, online databases for An. sinensis and malaria, and environmental variables including climate, geography, vegetation, and hosts, we constructed 10 algorithms and developed ensemble models. The ensemble models combining multiple algorithms (An. sinensis: area under the curve [AUC] = 0.981, kappa = 0.920; malaria: AUC = 0.959, kappa = 0.800), with the best out-of-sample performance, were used to identify important environmental predictors for the risk distributions of An. sinensis and malaria transmission. For An. sinensis, the most important predictor in the ensemble model was moisture index, which reflected degree of wetness; the risk of An. sinensis decreased with higher degrees of wetness. For malaria transmission, the most important predictor in the ensemble model was the normalized differential vegetation index, which reflected vegetation cover; the risk of malaria transmission decreased with more vegetation cover. Risk levels for An. sinensis and malaria transmission for each district of Shanghai were presented; however, there was a mismatch between the risk classification maps of An. sinensis and malaria transmission. Facing the challenge of malaria transmission in Shanghai, in addition to precise An. sinensis monitoring in risk areas of malaria transmission, malaria surveillance should occur even in low-risk areas for An. sinensis.
疟疾是由疟原虫引起的寄生虫病,中华按蚊是疟疾的传播媒介。尽管疟疾不再是中国的本土疾病,但仍存在疟疾输入性传播的高风险。本研究旨在确定媒介中华按蚊的风险分布和疟疾传播。使用 2010 年至 2020 年上海常规监测、中华按蚊和疟疾在线数据库以及气候、地理、植被和宿主等环境变量收集的数据,我们构建了 10 种算法并开发了集成模型。结合多种算法的集成模型(中华按蚊:曲线下面积[AUC] = 0.981,kappa = 0.920;疟疾:AUC = 0.959,kappa = 0.800),具有最佳的样本外性能,用于确定中华按蚊和疟疾传播风险分布的重要环境预测因子。对于中华按蚊,集成模型中最重要的预测因子是湿度指数,它反映了湿度程度;中华按蚊的风险随着湿度程度的增加而降低。对于疟疾传播,集成模型中最重要的预测因子是归一化差异植被指数,它反映了植被覆盖;疟疾传播的风险随着植被覆盖的增加而降低。展示了上海每个区的中华按蚊和疟疾传播风险水平;然而,中华按蚊和疟疾传播的风险分类图之间存在不匹配。面对上海疟疾传播的挑战,除了在疟疾传播的高风险地区进行精确的中华按蚊监测外,即使在中华按蚊低风险地区也应该进行疟疾监测。