文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于膀胱癌侵袭深度和组织学分级病理诊断的人工智能模型。

An artificial intelligence model for the pathological diagnosis of invasion depth and histologic grade in bladder cancer.

机构信息

Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China.

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.

出版信息

J Transl Med. 2023 Jan 23;21(1):42. doi: 10.1186/s12967-023-03888-z.


DOI:10.1186/s12967-023-03888-z
PMID:36691055
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9869632/
Abstract

BACKGROUND: Accurate pathological diagnosis of invasion depth and histologic grade is key for clinical management in patients with bladder cancer (BCa), but it is labour-intensive, experience-dependent and subject to interobserver variability. Here, we aimed to develop a pathological artificial intelligence diagnostic model (PAIDM) for BCa diagnosis. METHODS: A total of 854 whole slide images (WSIs) from 692 patients were included and divided into training and validation sets. The PAIDM was developed using the training set based on the deep learning algorithm ScanNet, and the performance was verified at the patch level in validation set 1 and at the WSI level in validation set 2. An independent validation cohort (validation set 3) was employed to compare the PAIDM and pathologists. Model performance was evaluated using the area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value and negative predictive value. RESULTS: The AUCs of the PAIDM were 0.878 (95% CI 0.875-0.881) at the patch level in validation set 1 and 0.870 (95% CI 0.805-0.923) at the WSI level in validation set 2. In comparing the PAIDM and pathologists, the PAIDM achieved an AUC of 0.847 (95% CI 0.779-0.905), which was non-inferior to the average diagnostic level of pathologists. There was high consistency between the model-predicted and manually annotated areas, improving the PAIDM's interpretability. CONCLUSIONS: We reported an artificial intelligence-based diagnostic model for BCa that performed well in identifying invasion depth and histologic grade. Importantly, the PAIDM performed admirably in patch-level recognition, with a promising application for transurethral resection specimens.

摘要

背景:膀胱癌(BCa)患者的临床管理的关键是准确的病理诊断浸润深度和组织学分级,但它是劳动密集型的,依赖经验,并受到观察者间的变异性。在这里,我们旨在开发一个用于膀胱癌诊断的病理人工智能诊断模型(PAIDM)。

方法:共纳入 692 例患者的 854 张全切片图像(WSI),并分为训练集和验证集。PAIDM 是基于深度学习算法 ScanNet 在训练集上开发的,并在验证集 1 的斑块水平和验证集 2 的 WSI 水平上进行验证。采用独立验证队列(验证集 3)比较 PAIDM 和病理学家。使用曲线下面积(AUC)、准确性、敏感性、特异性、阳性预测值和阴性预测值评估模型性能。

结果:PAIDM 在验证集 1 的斑块水平上的 AUC 为 0.878(95%CI 0.875-0.881),在验证集 2 的 WSI 水平上的 AUC 为 0.870(95%CI 0.805-0.923)。在比较 PAIDM 和病理学家时,PAIDM 达到了 0.847(95%CI 0.779-0.905)的 AUC,这与病理学家的平均诊断水平相当。模型预测和手动注释区域之间具有高度一致性,提高了 PAIDM 的可解释性。

结论:我们报告了一种基于人工智能的膀胱癌诊断模型,该模型在识别浸润深度和组织学分级方面表现良好。重要的是,PAIDM 在斑块级识别中表现出色,有望应用于经尿道切除标本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526b/9869632/be108fa76a98/12967_2023_3888_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526b/9869632/e335c8853714/12967_2023_3888_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526b/9869632/a4a132cccb18/12967_2023_3888_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526b/9869632/c69bcff221d2/12967_2023_3888_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526b/9869632/e7e3990e2fb7/12967_2023_3888_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526b/9869632/be108fa76a98/12967_2023_3888_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526b/9869632/e335c8853714/12967_2023_3888_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526b/9869632/a4a132cccb18/12967_2023_3888_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526b/9869632/c69bcff221d2/12967_2023_3888_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526b/9869632/e7e3990e2fb7/12967_2023_3888_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526b/9869632/be108fa76a98/12967_2023_3888_Fig5_HTML.jpg

相似文献

[1]
An artificial intelligence model for the pathological diagnosis of invasion depth and histologic grade in bladder cancer.

J Transl Med. 2023-1-23

[2]
Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study.

Lancet Oncol. 2023-4

[3]
Development and validation of artificial intelligence-based prescreening of large-bowel biopsies taken in the UK and Portugal: a retrospective cohort study.

Lancet Digit Health. 2023-11

[4]
An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study.

Lancet Digit Health. 2020-8

[5]
An Artificial Intelligence System for the Detection of Bladder Cancer via Cystoscopy: A Multicenter Diagnostic Study.

J Natl Cancer Inst. 2022-2-7

[6]
Development and Validation of an Artificial Intelligence-Powered Platform for Prostate Cancer Grading and Quantification.

JAMA Netw Open. 2021-11-1

[7]
CT-based radiomics to predict the pathological grade of bladder cancer.

Eur Radiol. 2020-12

[8]
Radiomics analysis of multiparametric MRI for the preoperative evaluation of pathological grade in bladder cancer tumors.

Eur Radiol. 2019-4-23

[9]
Pathologist-level diagnosis of ulcerative colitis inflammatory activity level using an automated histological grading method.

Int J Med Inform. 2024-12

[10]
Clinical Validation of Artificial Intelligence-Augmented Pathology Diagnosis Demonstrates Significant Gains in Diagnostic Accuracy in Prostate Cancer Detection.

Arch Pathol Lab Med. 2023-10-1

引用本文的文献

[1]
Deep transfer learning approach for automated cell death classification reveals novel ferroptosis-inducing agents in subsets of B-ALL.

Cell Death Dis. 2025-5-18

[2]
Recent Advances in Artificial Intelligence for Precision Diagnosis and Treatment of Bladder Cancer: A Review.

Ann Surg Oncol. 2025-4-12

[3]
Pathology-based deep learning features for predicting basal and luminal subtypes in bladder cancer.

BMC Cancer. 2025-2-20

[4]
Artificial intelligence application in the diagnosis and treatment of bladder cancer: advance, challenges, and opportunities.

Front Oncol. 2024-11-7

[5]
Artificial Intelligence in Uropathology.

Diagnostics (Basel). 2024-10-14

[6]
Precise grading of non-muscle invasive bladder cancer with multi-scale pyramidal CNN.

Sci Rep. 2024-10-24

[7]
A narrative review of advances in the management of urothelial cancer: Diagnostics and treatments.

Bladder (San Franc). 2024-8-16

[8]
Lesion Localization and Pathological Diagnosis of Ovine Pulmonary Adenocarcinoma Based on MASK R-CNN.

Animals (Basel). 2024-8-27

[9]
Applications of artificial intelligence in urologic oncology.

Investig Clin Urol. 2024-5

[10]
Preoperative fluorescence in situ hybridization analysis as a predictor of tumor recurrence in patients with non-muscle invasive bladder cancer: a bi-institutional study.

J Transl Med. 2023-10-2

本文引用的文献

[1]
Deep Learning-Based Classification of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images.

Gastroenterology. 2022-6

[2]
Bladder cancer: from a therapeutic wilderness to so many options; a guide to practice in a changing landscape.

Ann Oncol. 2022-3

[3]
Bladder cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up.

Ann Oncol. 2022-3

[4]
Deep learning for bone marrow cell detection and classification on whole-slide images.

Med Image Anal. 2022-1

[5]
Diagnostic assessment of deep learning for melanocytic lesions using whole-slide pathological images.

Transl Oncol. 2021-9

[6]
Identification of nodal micrometastasis in colorectal cancer using deep learning on annotation-free whole-slide images.

Mod Pathol. 2021-10

[7]
Artificial intelligence and pathology: From principles to practice and future applications in histomorphology and molecular profiling.

Semin Cancer Biol. 2022-9

[8]
Weakly supervised instance learning for thyroid malignancy prediction from whole slide cytopathology images.

Med Image Anal. 2021-1

[9]
Histopathological distinction of non-invasive and invasive bladder cancers using machine learning approaches.

BMC Med Inform Decis Mak. 2020-7-17

[10]
European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines.

Eur Urol. 2021-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索