Suppr超能文献

人工智能在膀胱癌精准诊断与治疗中的最新进展:综述

Recent Advances in Artificial Intelligence for Precision Diagnosis and Treatment of Bladder Cancer: A Review.

作者信息

Yang Xiangxiang, Yang Rui, Liu Xiuheng, Chen Zhiyuan, Zheng Qingyuan

机构信息

Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.

Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.

出版信息

Ann Surg Oncol. 2025 Apr 12. doi: 10.1245/s10434-025-17228-6.

Abstract

BACKGROUND

Bladder cancer is one of the top ten cancers globally, with its incidence steadily rising in China. Early detection and prognosis risk assessment play a crucial role in guiding subsequent treatment decisions for bladder cancer. However, traditional diagnostic methods such as bladder endoscopy, imaging, or pathology examinations heavily rely on the clinical expertise and experience of clinicians, exhibiting subjectivity and poor reproducibility.

MATERIALS AND METHODS

With the rise of artificial intelligence, novel approaches, particularly those employing deep learning technology, have shown significant advancements in clinical tasks related to bladder cancer, including tumor detection, molecular subtyping identification, tumor staging and grading, prognosis prediction, and recurrence assessment.

RESULTS

Artificial intelligence, with its robust data mining capabilities, enhances diagnostic efficiency and reproducibility when assisting clinicians in decision-making, thereby reducing the risks of misdiagnosis and underdiagnosis. This not only helps alleviate the current challenges of talent shortages and uneven distribution of medical resources but also fosters the development of precision medicine.

CONCLUSIONS

This study provides a comprehensive review of the latest research advances and prospects of artificial intelligence technology in the precise diagnosis and treatment of bladder cancer.

摘要

背景

膀胱癌是全球十大癌症之一,在中国其发病率呈稳步上升趋势。早期检测和预后风险评估对指导膀胱癌后续治疗决策起着至关重要的作用。然而,传统的诊断方法,如膀胱镜检查、影像学检查或病理检查,严重依赖临床医生的专业知识和经验,具有主观性且可重复性差。

材料与方法

随着人工智能的兴起,新方法,尤其是那些采用深度学习技术的方法,在与膀胱癌相关的临床任务中取得了显著进展,包括肿瘤检测、分子亚型鉴定、肿瘤分期和分级、预后预测以及复发评估。

结果

人工智能凭借其强大的数据挖掘能力,在协助临床医生进行决策时提高了诊断效率和可重复性,从而降低了误诊和漏诊的风险。这不仅有助于缓解当前人才短缺和医疗资源分布不均的挑战,还推动了精准医学的发展。

结论

本研究全面综述了人工智能技术在膀胱癌精准诊断和治疗方面的最新研究进展与前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验