Suppr超能文献

多尺度金字塔卷积神经网络精准分级非肌层浸润性膀胱癌。

Precise grading of non-muscle invasive bladder cancer with multi-scale pyramidal CNN.

机构信息

Biomedical Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt.

Department of Bioengineering, University of Louisville, Louisville, KY, USA.

出版信息

Sci Rep. 2024 Oct 24;14(1):25131. doi: 10.1038/s41598-024-77101-6.

Abstract

The grading of non-muscle invasive bladder cancer (NMIBC) continues to face challenges due to subjective interpretations, which affect the assessment of its severity. To address this challenge, we are developing an innovative artificial intelligence (AI) system aimed at objectively grading NMIBC. This system uses a novel convolutional neural network (CNN) architecture called the multi-scale pyramidal pretrained CNN to analyze both local and global pathology markers extracted from digital pathology images. The proposed CNN structure takes as input three levels of patches, ranging from small patches (e.g., ) to the largest size patches ( ). These levels are then fused by random forest (RF) to estimate the severity grade of NMIBC. The optimal patch sizes and other model hyperparameters are determined using a grid search algorithm. For each patch size, the proposed system has been trained on 32K patches (comprising 16K low-grade and 16K high-grade samples) and subsequently tested on 8K patches (consisting of 4K low-grade and 4K high-grade samples), all annotated by two pathologists. Incorporating light and efficient processing, defining new benchmarks in the application of AI to histopathology, the ShuffleNet-based AI system achieved notable metrics on the testing data, including 94.25% ± 0.70% accuracy, 94.47% ± 0.93% sensitivity, 94.03% ± 0.95% specificity, and a 94.29% ± 0.70% F1-score. These results highlight its superior performance over traditional models like ResNet-18. The proposed system's robustness in accurately grading pathology demonstrates its potential as an advanced AI tool for diagnosing human diseases in the domain of digital pathology.

摘要

非肌肉浸润性膀胱癌(NMIBC)的分级仍然面临着挑战,因为主观解释会影响其严重程度的评估。为了解决这个挑战,我们正在开发一种创新的人工智能(AI)系统,旨在客观地对 NMIBC 进行分级。该系统使用一种名为多尺度金字塔预训练 CNN 的新型卷积神经网络(CNN)架构,分析从数字病理学图像中提取的局部和全局病理学标志物。所提出的 CNN 结构将三个层次的斑块作为输入,范围从小斑块(例如 )到最大尺寸的斑块( )。然后,通过随机森林(RF)融合这些层次来估计 NMIBC 的严重程度等级。使用网格搜索算法确定最佳斑块大小和其他模型超参数。对于每个斑块大小,所提出的系统都在 32K 个斑块上进行了训练(包括 16K 个低级别和 16K 个高级别样本),然后在 8K 个斑块上进行了测试(包括 4K 个低级别和 4K 个高级别样本),所有斑块均由两位病理学家进行了注释。该基于 ShuffleNet 的 AI 系统采用轻量级和高效的处理方式,定义了 AI 在组织病理学应用中的新基准,在测试数据上实现了显著的指标,包括 94.25%±0.70%的准确率、94.47%±0.93%的敏感性、94.03%±0.95%的特异性和 94.29%±0.70%的 F1 得分。这些结果突出了它在传统模型(如 ResNet-18)上的卓越性能。该系统在准确分级病理学方面的稳健性证明了它作为数字病理学领域诊断人类疾病的先进 AI 工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/544d/11502747/dc3ff04e1c25/41598_2024_77101_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验