Suppr超能文献

针对关键刺突蛋白区域的 SARS-CoV-2 scFv 抗体可阻断膜融合。

Epitope-directed anti-SARS-CoV-2 scFv engineered against the key spike protein region could block membrane fusion.

机构信息

International Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi, India.

National Institute of Plant Genome Research, New Delhi, Delhi, India.

出版信息

Protein Sci. 2023 Mar;32(3):e4575. doi: 10.1002/pro.4575.

Abstract

The newly emerged SARS-CoV-2 causing coronavirus disease (COVID-19) resulted in >500 million infections. A great deal about the molecular processes of virus infection in the host is getting uncovered. Two sequential proteolytic cleavages of viral spike protein by host proteases are prerequisites for the entry of the virus into the host cell. The first cleavage occurs at S1/S2 site by the furin protease, and the second cleavage at a fusion activation site, the S2' site, by the TMPRSS2 protease. S2' cleavage site is present in the S2 domain of spike protein followed by a fusion peptide. Given the S2' site to be conserved among all the SARS-CoV-2 variants, we chose an S2' epitope encompassing the S2' cleavage site and generated single-chain antibodies (scFvs) through an exhaustive phage display library screening. Crystal structure of a scFv in complex with S2' epitope was determined. Incidentally, S2' epitope in the scFv bound structure adopts an alpha-helical conformation equivalent to the conformation of the epitope in the spike protein. Furthermore, these scFvs can bind to the spike protein expressed either in vitro or on the mammalian cell surface. We illustrate a molecular model based on structural and biochemical insights into the antibody-S2' epitope interaction emphasizing scFvs mediated blocking of virus entry into the host cell by restricting the access of TMPRSS2 protease and consequently inhibiting the S2' cleavage competitively.

摘要

新出现的导致冠状病毒病(COVID-19)的 SARS-CoV-2 导致了超过 5 亿例感染。宿主中病毒感染的分子过程有了很大的发现。病毒进入宿主细胞需要病毒刺突蛋白被宿主蛋白酶进行两次连续的蛋白水解切割。第一次切割发生在 S1/S2 位点,由弗林蛋白酶完成,第二次切割发生在融合激活位点 S2'位点,由 TMPRSS2 蛋白酶完成。S2' 切割位点存在于刺突蛋白的 S2 结构域中,后面跟着融合肽。鉴于 S2' 位点在所有 SARS-CoV-2 变体中都保守,我们选择了一个包含 S2' 切割位点的 S2' 表位,并通过全面的噬菌体展示文库筛选生成了单链抗体(scFvs)。复合物的 scFv 晶体结构与 S2' 表位一起被确定。顺便说一句,scFv 中 S2' 表位的构象与刺突蛋白中表位的构象相同,均呈 alpha-螺旋构象。此外,这些 scFvs 可以与体外表达或在哺乳动物细胞膜表面表达的刺突蛋白结合。我们基于结构和生化见解,提出了一个分子模型,强调了 scFv 通过限制 TMPRSS2 蛋白酶的进入来阻止病毒进入宿主细胞,从而竞争性地抑制 S2' 切割,从而介导阻断病毒进入宿主细胞。

相似文献

2
SARS-CoV-2 Spike Furin Cleavage Site and S2' Basic Residues Modulate the Entry Process in a Host Cell-Dependent Manner.
J Virol. 2022 Jul 13;96(13):e0047422. doi: 10.1128/jvi.00474-22. Epub 2022 Jun 9.
3
Impact of SARS-CoV-2 Spike Mutations on Its Activation by TMPRSS2 and the Alternative TMPRSS13 Protease.
mBio. 2022 Aug 30;13(4):e0137622. doi: 10.1128/mbio.01376-22. Epub 2022 Aug 1.
4
Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity.
J Virol. 2022 Apr 27;96(8):e0012822. doi: 10.1128/jvi.00128-22. Epub 2022 Mar 28.
5
Genome-wide bioinformatics analysis of human protease capacity for proteolytic cleavage of the SARS-CoV-2 spike glycoprotein.
Microbiol Spectr. 2024 Feb 6;12(2):e0353023. doi: 10.1128/spectrum.03530-23. Epub 2024 Jan 8.
6
Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6. doi: 10.1073/pnas.0809524106. Epub 2009 Mar 24.
7
SARS-CoV-2 spike engagement of ACE2 primes S2' site cleavage and fusion initiation.
Proc Natl Acad Sci U S A. 2022 Jan 4;119(1). doi: 10.1073/pnas.2111199119.
9
Proteolytic Activation of SARS-CoV-2 Spike at the S1/S2 Boundary: Potential Role of Proteases beyond Furin.
ACS Infect Dis. 2021 Feb 12;7(2):264-272. doi: 10.1021/acsinfecdis.0c00701. Epub 2021 Jan 12.
10
The "LLQY" Motif on SARS-CoV-2 Spike Protein Affects S Incorporation into Virus Particles.
J Virol. 2022 Mar 23;96(6):e0189721. doi: 10.1128/jvi.01897-21. Epub 2022 Jan 19.

引用本文的文献

1
The Potential of Single-Chain Variable Fragment Antibody: Role in Future Therapeutic and Diagnostic Biologics.
J Immunol Res. 2024 Aug 9;2024:1804038. doi: 10.1155/2024/1804038. eCollection 2024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验