Suppr超能文献

深度学习确定了英国生物库 28097 例 COVID-19 相关死亡病例的遗传变异。

Deep learning identified genetic variants for COVID-19-related mortality among 28,097 affected cases in UK Biobank.

机构信息

Department of Biostatistics, Yale University, New Haven, Connecticut, USA.

出版信息

Genet Epidemiol. 2023 Apr;47(3):215-230. doi: 10.1002/gepi.22515. Epub 2023 Jan 24.

Abstract

Analysis of host genetic components provides insights into the susceptibility and response to viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19). To reveal genetic determinants of susceptibility to COVID-19 related mortality, we train a deep learning model to identify groups of genetic variants and their interactions that contribute to the COVID-19 related mortality risk using the UK Biobank data (28,097 affected cases and 1656 deaths). We refer to such groups of variants as super variants. We identify 15 super variants with various levels of significance as susceptibility loci for COVID-19 mortality. Specifically, we identify a super variant (odds ratio [OR] = 1.594, p = 5.47 × 10 ) on Chromosome 7 that consists of the minor allele of rs76398985, rs6943608, rs2052130, 7:150989011_CT_C, rs118033050, and rs12540488. We also discover a super variant (OR = 1.353, p = 2.87 × 10 ) on Chromosome 5 that contains rs12517344, rs72733036, rs190052994, rs34723029, rs72734818, 5:9305797_GTA_G, and rs180899355.

摘要

分析宿主遗传成分可以深入了解易感性和对病毒感染的反应,例如严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2),它会引起 2019 年冠状病毒病(COVID-19)。为了揭示与 COVID-19 相关死亡率相关的遗传决定因素,我们使用英国生物银行数据(28097 例受影响病例和 1656 例死亡),训练一个深度学习模型来识别导致 COVID-19 相关死亡率风险的遗传变异组及其相互作用。我们将此类变异组称为超级变异体。我们确定了 15 个具有不同显著水平的超级变体,作为 COVID-19 死亡率的易感性基因座。具体来说,我们确定了一个超级变体(优势比[OR] = 1.594,p = 5.47 × 10 )位于 7 号染色体上,由 rs76398985、rs6943608、rs2052130、7:150989011_CT_C、rs118033050 和 rs12540488 的次要等位基因组成。我们还在 5 号染色体上发现了一个超级变体(OR = 1.353,p = 2.87 × 10 ),其中包含 rs12517344、rs72733036、rs190052994、rs34723029、rs72734818、5:9305797_GTA_G 和 rs180899355。

相似文献

1
Deep learning identified genetic variants for COVID-19-related mortality among 28,097 affected cases in UK Biobank.
Genet Epidemiol. 2023 Apr;47(3):215-230. doi: 10.1002/gepi.22515. Epub 2023 Jan 24.
2
Genetic variants are identified to increase risk of COVID-19 related mortality from UK Biobank data.
Hum Genomics. 2021 Feb 3;15(1):10. doi: 10.1186/s40246-021-00306-7.
6
Genetic variants are identified to increase risk of COVID-19 related mortality from UK Biobank data.
medRxiv. 2020 Nov 9:2020.11.05.20226761. doi: 10.1101/2020.11.05.20226761.
7
Clinical, regional, and genetic characteristics of Covid-19 patients from UK Biobank.
PLoS One. 2020 Nov 17;15(11):e0241264. doi: 10.1371/journal.pone.0241264. eCollection 2020.
8
UKB.COVID19: an R package for UK Biobank COVID-19 data processing and analysis.
F1000Res. 2024 Jul 26;10:830. doi: 10.12688/f1000research.55370.2. eCollection 2021.
9

引用本文的文献

1
Deep learning-based ranking method for subgroup and predictive biomarker identification in patients.
Commun Med (Lond). 2025 Jun 10;5(1):221. doi: 10.1038/s43856-025-00946-z.
3
Peripheral Blood Omics and Other Multiplex-based Systems in Pulmonary and Critical Care Medicine.
Am J Respir Cell Mol Biol. 2023 Oct;69(4):383-390. doi: 10.1165/rcmb.2023-0153PS.
4
Pros and cons of Mendelian randomization.
Fertil Steril. 2023 Jun;119(6):913-916. doi: 10.1016/j.fertnstert.2023.03.029. Epub 2023 Mar 27.

本文引用的文献

1
The Conserved Macrodomain Is a Potential Therapeutic Target for Coronaviruses and Alphaviruses.
Pathogens. 2022 Jan 14;11(1):94. doi: 10.3390/pathogens11010094.
2
SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids.
Cell Stem Cell. 2022 Feb 3;29(2):217-231.e8. doi: 10.1016/j.stem.2021.12.010. Epub 2021 Dec 25.
3
Decreased memory B cell frequencies in COVID-19 delta variant vaccine breakthrough infection.
EMBO Mol Med. 2022 Mar 7;14(3):e15227. doi: 10.15252/emmm.202115227. Epub 2022 Jan 21.
4
A single-cell transcriptomic landscape of the lungs of patients with COVID-19.
Nat Cell Biol. 2021 Dec;23(12):1314-1328. doi: 10.1038/s41556-021-00796-6. Epub 2021 Dec 7.
7
Long-term changes in pulmonary function among patients surviving to COVID-19 pneumonia.
Infection. 2022 Aug;50(4):1019-1022. doi: 10.1007/s15010-021-01718-2. Epub 2021 Oct 15.
9
COVID-19 and the effects on pulmonary function following infection: A retrospective analysis.
EClinicalMedicine. 2021 Sep;39:101079. doi: 10.1016/j.eclinm.2021.101079. Epub 2021 Aug 13.
10
Mapping the human genetic architecture of COVID-19.
Nature. 2021 Dec;600(7889):472-477. doi: 10.1038/s41586-021-03767-x. Epub 2021 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验