Suppr超能文献

用于正电子发射断层扫描(PET)成像的神经生长因子放射性缀合物的研发与生物分布

Development and Biodistribution of a Nerve Growth Factor Radioactive Conjugate for PET Imaging.

作者信息

Carrasco R A, Salih A K, Garcia M Dominguez, Khozeimeh E S, Adams G P, Phenix C P, Price E W

机构信息

Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N5C9, Canada.

Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N5B4, Canada.

出版信息

Mol Imaging Biol. 2023 Oct;25(5):977-988. doi: 10.1007/s11307-023-01805-w. Epub 2023 Jan 24.

Abstract

PURPOSE

The purpose of these studies was to develop a nerve growth factor (NGF) radiometal-chelator conjugate to determine the biodistribution and brain uptake of NGF by positron emission tomography/computerized tomography (PET-CT).

PROCEDURES

Purified NGF from llama seminal plasma was conjugated with FITC, and the chelator NOTA or DFO. NGF conjugates were evaluated for bioactivity. NOTA- and DFO-conjugated NGF were radiolabeled with gallium-68 or zirconium-89 ([ Ga]GaCl, half-life = 68 min; [Zr]Zr(oxalate), half-life = 3.3 days). [Zr]Zr-NGF was evaluated for biodistribution (0.5, 1, or 24 h), PET imaging (60 min), and brain autoradiography in mice.

RESULTS

Cell-based in vitro assays confirmed that the NGF conjugates maintained NGF receptor-binding and biological activity. Zirconium-89 and gallium-68 radiolabeling showed a high efficiency; however, only[Zr]Zr-NGF was stable in vitro. Biodistribution studies showed that, as with most small proteins < 70 kDa, [Zr]Zr-NGF uptake was predominantly in the kidney and was cleared rapidly with almost complete elimination of NGF at 24 h. Dynamic PET imaging from 0-60 min showed a similar pattern to ex vivo biodistribution with some transient liver uptake. Interestingly, although absolute brain uptake was very low, at 24 h after treatment, cerebral cortex uptake was higher than any other brain area examined and blood.

CONCLUSIONS

We conclude that conjugation of DFO to NGF through a thiourea linkage allows effective radiolabeling with zirconium-89 while maintaining NGF bioactivity. Following intravenous administration, the radiolabeled NGF targets non-neuronal tissues (e.g., kidney, liver), and although absolute brain uptake was very low, the brain uptake that was observed was restricted to the cortex.

摘要

目的

这些研究的目的是开发一种神经生长因子(NGF)放射性金属螯合剂共轭物,通过正电子发射断层扫描/计算机断层扫描(PET-CT)来确定NGF的生物分布和脑摄取情况。

程序

从羊驼精浆中纯化的NGF与异硫氰酸荧光素(FITC)以及螯合剂氮杂环三乙酸(NOTA)或二乙烯三胺五乙酸(DFO)进行共轭。对NGF共轭物的生物活性进行评估。用镓-68或锆-89([⁶⁸Ga]GaCl,半衰期=68分钟;[⁸⁹Zr]Zr(草酸盐),半衰期=3.3天)对NOTA和DFO共轭的NGF进行放射性标记。对[⁸⁹Zr]Zr-NGF进行生物分布评估(0.5、1或24小时)、PET成像(60分钟)以及小鼠脑放射自显影。

结果

基于细胞的体外试验证实,NGF共轭物保持了NGF受体结合能力和生物活性。锆-89和镓-68放射性标记显示出高效率;然而,只有[⁸⁹Zr]Zr-NGF在体外是稳定的。生物分布研究表明,与大多数分子量小于70 kDa的小蛋白质一样,[⁸⁹Zr]Zr-NGF的摄取主要在肾脏,并且清除迅速,在24小时时几乎完全清除了NGF。0至60分钟的动态PET成像显示出与离体生物分布相似的模式,有一些短暂的肝脏摄取。有趣的是,尽管绝对脑摄取非常低,但在治疗后24小时,大脑皮质摄取高于所检查的任何其他脑区和血液。

结论

我们得出结论,通过硫脲键将DFO与NGF共轭能够有效地用锆-89进行放射性标记,同时保持NGF的生物活性。静脉注射后,放射性标记的NGF靶向非神经组织(如肾脏、肝脏),尽管绝对脑摄取非常低,但观察到的脑摄取仅限于皮质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验