Department of Chemistry, University of Rochester, Rochester, New York14627, United States.
Materials Science Program, University of Rochester, Rochester, New York14627, United States.
ACS Biomater Sci Eng. 2023 Feb 13;9(2):784-796. doi: 10.1021/acsbiomaterials.2c01299. Epub 2023 Jan 24.
Protein-based therapeutics have emerged as next-generation pharmaceutical agents for oncology, bone regeneration, autoimmune disorders, viral infections, and other diseases. The clinical application of protein therapeutics has been impeded by pharmacokinetic and pharmacodynamic challenges including off-target toxicity, rapid clearance, and drug stability. Strategies for the localized and sustained delivery of protein therapeutics have shown promise in addressing these challenges. Hydrogels are critical materials that enable these delivery strategies. Supramolecular hydrogels composed of self-assembled materials have demonstrated biocompatibility advantages over polymer hydrogels, with peptide and protein-based gels showing strong potential. However, cost is a significant drawback of peptide-based supramolecular hydrogels. Supramolecular hydrogels composed of inexpensive low-molecular-weight (LMW) gelators, including modified amino acid derivatives, have been reported as viable alternatives to peptide-based materials. Herein, we report the encapsulation and release of proteins from supramolecular hydrogels composed of perfluorinated fluorenylmethyloxcarbonyl-modified phenylalanine (Fmoc-F-Phe-DAP). Specifically, we demonstrate release of four model proteins (ribonuclease A (RNase A), trypsin inhibitor (TI), bovine serum albumin (BSA), and human immunoglobulin G (IgG)) from these hydrogels. The emergent viscoelastic properties of these materials are characterized, and the functional and time-dependent release of proteins from the hydrogels is demonstrated. In addition, it is shown that the properties of the aqueous solution used for hydrogel formulation have a significant influence on the release profiles, as a function of the isoelectric point and molecular weight of the protein payloads. These studies collectively validate that this class of supramolecular LMW hydrogel possesses the requisite properties for the sustained and localized release of protein therapeutics.
蛋白质类治疗药物已成为治疗肿瘤、骨再生、自身免疫性疾病、病毒感染和其他疾病的下一代药物。蛋白质治疗药物的临床应用受到药代动力学和药效动力学挑战的阻碍,包括非靶毒性、快速清除和药物稳定性。蛋白质治疗药物的局部和持续递送策略在解决这些挑战方面显示出了希望。水凝胶是实现这些递送策略的关键材料。由自组装材料组成的超分子水凝胶在生物相容性方面优于聚合物水凝胶,基于肽和蛋白质的凝胶显示出巨大的潜力。然而,成本是基于肽的超分子水凝胶的一个显著缺点。由廉价的低分子量(LMW)凝胶剂组成的超分子水凝胶,包括修饰的氨基酸衍生物,已被报道为基于肽的材料的可行替代品。在此,我们报告了由全氟芴甲氧羰基修饰的苯丙氨酸(Fmoc-F-Phe-DAP)组成的超分子水凝胶对蛋白质的包封和释放。具体而言,我们证明了四种模型蛋白(核糖核酸酶 A(RNase A)、胰蛋白酶抑制剂(TI)、牛血清白蛋白(BSA)和人免疫球蛋白 G(IgG))从这些水凝胶中的释放。这些材料的新兴粘弹性特性得到了表征,并证明了蛋白质从水凝胶中的功能和时变释放。此外,还表明用于水凝胶配方的水溶液的性质对蛋白质载物的等电点和分子量的释放曲线有显著影响。这些研究共同证明了这类超分子 LMW 水凝胶具有持续和局部释放蛋白质治疗药物的必要特性。
ACS Biomater Sci Eng. 2023-2-13
ACS Appl Bio Mater. 2019-4-4
Colloids Surf B Biointerfaces. 2019-10-16
Molecules. 2025-8-11
Gels. 2022-9-7
Materials (Basel). 2022-8-25
ACS Appl Bio Mater. 2022-5-27
ACS Appl Bio Mater. 2019-4-4
ACS Nano. 2021-5-25
Biomed Mater. 2021-2-21
Comput Struct Biotechnol J. 2020-6-11