Iosip Anda-Larisa, Scherzer Sönke, Bauer Sonja, Becker Dirk, Krischke Markus, Al-Rasheid Khaled A S, Schultz Jörg, Kreuzer Ines, Hedrich Rainer
Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; Center for Computational and Theoretical Biology, University of Würzburg, Clara-Oppenheimer-Weg 32, 97074 Würzburg, Germany.
Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany.
Curr Biol. 2023 Feb 6;33(3):589-596.e5. doi: 10.1016/j.cub.2022.12.058. Epub 2023 Jan 23.
The Venus flytrap Dionaea muscipula estimates prey nutrient content by counting trigger hair contacts initiating action potentials (APs) and calcium waves traveling all over the trap. A first AP is associated with a subcritical rise in cytosolic calcium concentration, but when the second AP arrives in time, calcium levels pass the threshold required for fast trap closure. Consequently, memory function and decision-making are timed via a calcium clock. For higher numbers of APs elicited by the struggling prey, the Ca clock connects to the networks governed by the touch hormone jasmonic acid (JA), which initiates slow, hermetic trap sealing and mining of the animal food stock. Two distinct phases of trap closure can be distinguished within Dionaea's hunting cycle: (1) very fast trap snapping requiring two APs and crossing of a critical cytosolic Ca level and (2) JA-dependent slow trap sealing and prey processing induced by more than five APs. The Dionaea mutant DYSC is still able to fire touch-induced APs but does not snap close its traps and fails to enter the hunting cycle after prolonged mechanostimulation. Transcriptomic analyses revealed that upon trigger hair touch/AP stimulation, activation of calcium signaling is largely suppressed in DYSC traps. The observation that external JA application restored hunting cycle progression together with the DYSC phenotype and its transcriptional landscape indicates that DYSC cannot properly read, count, and decode touch/AP-induced calcium signals that are key in prey capture and processing.
捕蝇草(茅膏菜科捕蝇草属)通过计算引发动作电位(APs)的触发毛接触次数以及遍布捕虫器的钙波来估算猎物的营养成分。第一个动作电位与胞质钙浓度的亚临界升高有关,但当第二个动作电位及时到达时,钙水平会超过快速关闭捕虫器所需的阈值。因此,记忆功能和决策是通过钙时钟来计时的。对于挣扎的猎物引发的更多数量的动作电位,钙时钟会连接到由触摸激素茉莉酸(JA)控制的网络,茉莉酸会启动缓慢、严密的捕虫器密封以及对动物食物储备的挖掘。在捕蝇草的捕猎周期中,可以区分出捕虫器关闭的两个不同阶段:(1)非常快速的捕虫器捕捉,需要两个动作电位并超过临界胞质钙水平;(2)由超过五个动作电位诱导的依赖茉莉酸的缓慢捕虫器密封和猎物处理。捕蝇草突变体DYSC仍然能够激发触摸诱导的动作电位,但不会迅速关闭其捕虫器,并且在长时间机械刺激后无法进入捕猎周期。转录组分析表明,在触发毛触摸/动作电位刺激后,DYSC捕虫器中钙信号的激活在很大程度上受到抑制。外部施用茉莉酸可恢复捕猎周期进程以及DYSC表型及其转录图谱,这一观察结果表明,DYSC无法正确读取、计数和解码触摸/动作电位诱导的钙信号,而这些信号是猎物捕获和处理的关键。