Böhm Jennifer, Scherzer Sönke, Krol Elzbieta, Kreuzer Ines, von Meyer Katharina, Lorey Christian, Mueller Thomas D, Shabala Lana, Monte Isabel, Solano Roberto, Al-Rasheid Khaled A S, Rennenberg Heinz, Shabala Sergey, Neher Erwin, Hedrich Rainer
Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany.
Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany; Naturwissenschaftliches Labor für Schüler, Friedrich-Koenig-Gymnasium, 97082 Würzburg, Germany.
Curr Biol. 2016 Feb 8;26(3):286-95. doi: 10.1016/j.cub.2015.11.057. Epub 2016 Jan 21.
Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na(+)-rich animal and nutrition for the plant.
食肉植物,如捕蝇草(捕蝇草),在营养贫瘠的土壤中生长时依赖动物饮食。当昆虫进入陷阱并倾斜内表面的机械传感器时,就会产生动作电位(APs)。当一个移动物体引发两个动作电位后,陷阱会迅速关闭,将猎物困住。惊慌失措的猎物在随后的几个小时里反复触碰触发毛,导致陷阱完全关闭,通过基于腺体的内分泌系统,陷阱被一种分解猎物的酸性酶混合物淹没。在这里,我们提出了一个问题:捕蝇草需要多少次刺激触发毛(例如,需要多少个动作电位)才能将被困物体识别为潜在食物,从而值得激活腺体。通过施加一系列触发毛刺激,我们发现接触激素茉莉酸(JA)信号通路在第二次刺激后被激活,而需要超过三个动作电位才能触发编码猎物降解水解酶的基因表达,并且这种表达与机械刺激的次数成正比。一只正在分解的动物含有钠负荷,我们发现这些钠离子通过腺体进入捕获器官。我们确定了一种捕蝇草钠通道DmHKT1负责这种钠的获取,其表达的转录本数量取决于机电刺激的次数。因此,猎物在试图挣脱陷阱时触发的动作电位数量将移动的猎物识别为一只富含钠且挣扎的动物,是植物的营养来源。