基于客观结构化手术技能评估标准的自动化软外科手术技能评估的深度神经网络架构。

Deep neural network architecture for automated soft surgical skills evaluation using objective structured assessment of technical skills criteria.

机构信息

G.E.E., LAT, Université de Tlemcen, Tlemcen, 13000, Algeria.

G.B.M., Laboratoire de Génie Biomédical, Université de Tlemcen, Tlemcen, 13000, Algeria.

出版信息

Int J Comput Assist Radiol Surg. 2023 May;18(5):929-937. doi: 10.1007/s11548-022-02827-5. Epub 2023 Jan 25.

Abstract

PURPOSE

Classic methods of surgery skills evaluation tend to classify the surgeon performance in multi-categorical discrete classes. If this classification scheme has proven to be effective, it does not provide in-between evaluation levels. If these intermediate scoring levels were available, they would provide more accurate evaluation of the surgeon trainee.

METHODS

We propose a novel approach to assess surgery skills on a continuous scale ranging from 1 to 5. We show that the proposed approach is flexible enough to be used either for scores of global performance or several sub-scores based on a surgical criteria set called Objective Structured Assessment of Technical Skills (OSATS). We established a combined CNN+BiLSTM architecture to take advantage of both temporal and spatial features of kinematic data. Our experimental validation relies on real-world data obtained from JIGSAWS database. The surgeons are evaluated on three tasks: Knot-Tying, Needle-Passing and Suturing. The proposed framework of neural networks takes as inputs a sequence of 76 kinematic variables and produces an output float score ranging from 1 to 5, reflecting the quality of the performed surgical task.

RESULTS

Our proposed model achieves high-quality OSATS scores predictions with means of Spearman correlation coefficients between the predicted outputs and the ground-truth outputs of 0.82, 0.60 and 0.65 for Knot-Tying, Needle-Passing and Suturing, respectively. To our knowledge, we are the first to achieve this regression performance using the OSATS criteria and the JIGSAWS kinematic data.

CONCLUSION

An effective deep learning tool was created for the purpose of surgical skills assessment. It was shown that our method could be a promising surgical skills evaluation tool for surgical training programs.

摘要

目的

经典的手术技能评估方法倾向于将外科医生的表现分类为多类别离散类别。如果这种分类方案被证明是有效的,它并没有提供中间评估级别。如果这些中间评分级别可用,它们将为外科医生培训生提供更准确的评估。

方法

我们提出了一种新的方法,以便在 1 到 5 的连续范围内评估手术技能。我们表明,所提出的方法足够灵活,可以用于整体表现的评分,也可以基于称为客观结构化手术技能评估(OSATS)的手术标准集的几个子评分。我们建立了一个结合 CNN+BiLSTM 的架构,以利用运动学数据的时间和空间特征。我们的实验验证依赖于从 JIGSAWS 数据库获得的真实世界数据。外科医生在三个任务上进行评估:打结、穿针和缝合。所提出的神经网络框架将 76 个运动学变量的序列作为输入,并产生一个从 1 到 5 的浮动评分输出,反映执行手术任务的质量。

结果

我们提出的模型实现了高质量的 OSATS 评分预测,预测输出与真实输出之间的斯皮尔曼相关系数的平均值分别为 0.82、0.60 和 0.65,用于打结、穿针和缝合。据我们所知,我们是第一个使用 OSATS 标准和 JIGSAWS 运动学数据实现这种回归性能的人。

结论

为手术技能评估创建了一种有效的深度学习工具。结果表明,我们的方法可能是一种有前途的手术技能评估工具,可用于手术培训计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索