Suppr超能文献

人工智能在微创手术中的技术技能评估:系统评价。

Technical skill assessment in minimally invasive surgery using artificial intelligence: a systematic review.

机构信息

Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

IHU Strasbourg, Strasbourg, France.

出版信息

Surg Endosc. 2023 Oct;37(10):7412-7424. doi: 10.1007/s00464-023-10335-z. Epub 2023 Aug 16.

Abstract

BACKGROUND

Technical skill assessment in surgery relies on expert opinion. Therefore, it is time-consuming, costly, and often lacks objectivity. Analysis of intraoperative data by artificial intelligence (AI) has the potential for automated technical skill assessment. The aim of this systematic review was to analyze the performance, external validity, and generalizability of AI models for technical skill assessment in minimally invasive surgery.

METHODS

A systematic search of Medline, Embase, Web of Science, and IEEE Xplore was performed to identify original articles reporting the use of AI in the assessment of technical skill in minimally invasive surgery. Risk of bias (RoB) and quality of the included studies were analyzed according to Quality Assessment of Diagnostic Accuracy Studies criteria and the modified Joanna Briggs Institute checklists, respectively. Findings were reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement.

RESULTS

In total, 1958 articles were identified, 50 articles met eligibility criteria and were analyzed. Motion data extracted from surgical videos (n = 25) or kinematic data from robotic systems or sensors (n = 22) were the most frequent input data for AI. Most studies used deep learning (n = 34) and predicted technical skills using an ordinal assessment scale (n = 36) with good accuracies in simulated settings. However, all proposed models were in development stage, only 4 studies were externally validated and 8 showed a low RoB.

CONCLUSION

AI showed good performance in technical skill assessment in minimally invasive surgery. However, models often lacked external validity and generalizability. Therefore, models should be benchmarked using predefined performance metrics and tested in clinical implementation studies.

摘要

背景

手术中的技术技能评估依赖于专家意见。因此,这种评估既耗时、昂贵,又往往缺乏客观性。人工智能(AI)对术中数据的分析具有实现技术技能自动评估的潜力。本系统评价旨在分析用于微创外科技术技能评估的 AI 模型的性能、外部有效性和可推广性。

方法

系统检索了 Medline、Embase、Web of Science 和 IEEE Xplore,以确定报告 AI 在微创外科技术技能评估中应用的原始文章。根据诊断准确性研究的质量评估标准和改良的 Joanna Briggs 研究所清单分别对纳入研究的偏倚风险(RoB)和质量进行了分析。根据系统评价和荟萃分析的首选报告项目报告了研究结果。

结果

共确定了 1958 篇文章,其中 50 篇符合入选标准并进行了分析。从手术视频中提取的运动数据(n=25)或来自机器人系统或传感器的运动学数据(n=22)是 AI 最常用的输入数据。大多数研究使用深度学习(n=34),并使用有序评估量表预测技术技能(n=36),在模拟环境中具有良好的准确性。然而,所有提出的模型都处于开发阶段,只有 4 项研究进行了外部验证,8 项研究显示 RoB 较低。

结论

AI 在微创外科技术技能评估中表现出良好的性能。然而,模型往往缺乏外部有效性和可推广性。因此,模型应使用预定义的性能指标进行基准测试,并在临床实施研究中进行测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a649/10520175/1be75d0da9ef/464_2023_10335_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验