Suppr超能文献

机器人辅助手术中手术活动的时间聚类

Temporal clustering of surgical activities in robot-assisted surgery.

作者信息

Zia Aneeq, Zhang Chi, Xiong Xiaobin, Jarc Anthony M

机构信息

College of Computing, Georgia Institute of Technology, North Ave NW, Atlanta, GA, 30332, USA.

Electrical Engineering and Computer Science, University of Tennessee, 1520 Middle Dr, Knoxville, TN, 37996, USA.

出版信息

Int J Comput Assist Radiol Surg. 2017 Jul;12(7):1171-1178. doi: 10.1007/s11548-017-1600-y. Epub 2017 May 5.

Abstract

PURPOSE

Most evaluations of surgical workflow or surgeon skill use simple, descriptive statistics (e.g., time) across whole procedures, thereby deemphasizing critical steps and potentially obscuring critical inefficiencies or skill deficiencies. In this work, we examine off-line, temporal clustering methods that chunk training procedures into clinically relevant surgical tasks or steps during robot-assisted surgery.

METHODS

We collected system kinematics and events data from nine surgeons performing five different surgical tasks on a porcine model using the da Vinci Si surgical system. The five tasks were treated as one 'pseudo-procedure.' We compared four different temporal clustering algorithms-hierarchical aligned cluster analysis (HACA), aligned cluster analysis (ACA), spectral clustering (SC), and Gaussian mixture model (GMM)-using multiple feature sets.

RESULTS

HACA outperformed the other methods reaching an average segmentation accuracy of [Formula: see text] when using all system kinematics and events data as features. SC and ACA reached moderate performance with [Formula: see text] and [Formula: see text] average segmentation accuracy, respectively. GMM consistently performed poorest across algorithms.

CONCLUSIONS

Unsupervised temporal segmentation of surgical procedures into clinically relevant steps achieves good accuracy using just system data. Such methods will enable surgeons to receive directed feedback on individual surgical tasks rather than whole procedures in order to improve workflow, assessment, and training.

摘要

目的

大多数对外科手术流程或外科医生技能的评估都使用整个手术过程中的简单描述性统计数据(例如时间),从而淡化了关键步骤,并可能掩盖关键的效率低下或技能缺陷。在这项研究中,我们研究了离线时间聚类方法,该方法可将机器人辅助手术中的训练过程划分为临床相关的手术任务或步骤。

方法

我们使用达芬奇Si手术系统,收集了九位外科医生在猪模型上执行五种不同手术任务时的系统运动学和事件数据。这五个任务被视为一个“伪手术过程”。我们使用多个特征集比较了四种不同的时间聚类算法——层次对齐聚类分析(HACA)、对齐聚类分析(ACA)、谱聚类(SC)和高斯混合模型(GMM)。

结果

当使用所有系统运动学和事件数据作为特征时,HACA的表现优于其他方法,平均分割准确率达到[公式:见原文]。SC和ACA的表现中等,平均分割准确率分别为[公式:见原文]和[公式:见原文]。GMM在所有算法中始终表现最差。

结论

仅使用系统数据将外科手术过程无监督地分割为临床相关步骤可实现良好的准确性。此类方法将使外科医生能够获得针对单个手术任务而非整个手术过程的定向反馈,以改善手术流程、评估和培训。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9324/5509863/ce0672c45199/11548_2017_1600_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验