Dos Santos Correia Paulo Ricardo, de Souza Alesson Henrique Donato, Chaparro Andres Reyes, Tenorio Barajas Aldo Yair, Porto Ricardo Silva
Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões - Tabuleiro dos Martins, 57072-970, Maceió, Alagoas, Brazil.
Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla No. 3001, CP 76230, Juriquilla, Querétaro, Mexico.
Curr Comput Aided Drug Des. 2023;19(5):391-404. doi: 10.2174/1573409919666230123150013.
The rapidly widespread SARS-CoV-2 infection has affected millions worldwide, thus becoming a global health emergency. Although vaccines are already available, there are still new COVID-19 cases daily worldwide, mainly due to low immunization coverage and the advent of new strains. Therefore, there is an utmost need for the discovery of lead compounds to treat COVID-19.
Considering the relevance of the SARS-CoV-2 M in viral replication and the role of the isoquinoline moiety as a core part of several biologically relevant compounds, this study aimed to identify isoquinoline-based molecules as new drug-like compounds, aiming to develop an effective coronavirus inhibitor.
274 isoquinoline derivatives were submitted to molecular docking interactions with SARS-CoV-2 M (PDB ID: 7L0D) and drug-likeness analysis. The five best-docked isoquinoline derivatives that did not violate any of Lipinski's or Veber's parameters were submitted to ADMET analysis and molecular dynamics (MD) simulations.
The selected compounds exhibited docking scores similar to or better than chloroquine and other isoquinolines previously reported. The fact that the compounds interact with residues that are pivotal for the enzyme's catalytic activity, and show the potential to be orally administered makes them promising drugs for treating COVID-19.
Ultimately, MD simulation was performed to verify ligand-protein complex stability during the simulation period.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染的迅速蔓延已影响全球数百万人,成为全球卫生紧急事件。尽管已有疫苗可用,但全球仍每天有新增新冠病毒病例,主要原因是免疫接种覆盖率低以及新毒株的出现。因此,迫切需要发现治疗新冠病毒病(COVID-19)的先导化合物。
考虑到SARS-CoV-2 M在病毒复制中的相关性以及异喹啉部分作为几种具有生物学相关性化合物的核心部分的作用,本研究旨在鉴定基于异喹啉的分子作为新型类药物化合物,以开发一种有效的冠状病毒抑制剂。
将274种异喹啉衍生物与SARS-CoV-2 M(蛋白质数据银行ID:7L0D)进行分子对接相互作用并进行类药性分析。将未违反任何Lipinski参数或Veber参数的五种对接效果最佳的异喹啉衍生物进行药物代谢动力学、药物代谢和毒性(ADMET)分析以及分子动力学(MD)模拟。
所选化合物的对接分数与氯喹及先前报道的其他异喹啉相似或更好。这些化合物与对该酶催化活性至关重要的残基相互作用,且显示出口服给药的潜力,这使得它们成为治疗COVID-19的有前景的药物。
最终,进行了分子动力学模拟以验证模拟期间配体-蛋白质复合物的稳定性。