Atroshenko D L, Golovina D I, Sergeev E P, Shelomov M D, Elcheninov A G, Kublanov I V, Chubar T A, Pometun A A, Savin S S, Tishkov V I
Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russia.
Federal Research Centre "Fundamentals of Biotechnology" of RAS, Moscow, 119071 Russia.
Acta Naturae. 2022 Oct-Dec;14(4):57-68. doi: 10.32607/actanaturae.11812.
D-amino acid oxidase (DAAO, EC 1.2.1.2) plays an important role in the functioning of prokaryotes as well as of lower (yeast and fungi) and higher eukaryotes (mammals). DAAO genes have not yet been found in archaean genomes. D-amino acid oxidase is increasingly used in various fields, which requires the development of new variants of the enzyme with specific properties. However, even within one related group (bacteria, yeasts and fungi, mammals), DAAOs show very low homology between amino acid sequences. In particular, this fact is clearly observed in the case of DAAO from bacteria. The high variability in the primary structures of DAAO severely limits the search for new enzymes in known genomes. As a result, many (if not most) DAAO genes remain either unannotated or incorrectly annotated. We propose an approach that uses bioinformatic methods in combination with general 3D structure and active center structure analysis to confirm that the gene found encodes D-amino acid oxidase and to predict the possible type of its substrate specificity. Using a homology search, we obtained a set of candidate sequences, modelled the tertiary structure of the selected enzymes, and compared them with experimental and model structures of known DAAOs. The effectiveness of the proposed approach for discrimination of DAAOs and glycine oxidases is shown. Using this approach, new DAAO genes were found in the genomes of six strains of extremophilic bacteria, and for the first time in the world, one gene was identified in the genome of halophilic archaea. Preliminary experiments confirmed the predicted specificity of DAAO from Natronosporangium hydrolyticum ACPA39 with D-Leu and D-Phe.
D-氨基酸氧化酶(DAAO,EC 1.2.1.2)在原核生物以及低等(酵母和真菌)和高等真核生物(哺乳动物)的功能中发挥着重要作用。在古细菌基因组中尚未发现DAAO基因。D-氨基酸氧化酶在各个领域的应用越来越广泛,这就需要开发具有特定特性的新酶变体。然而,即使在一个相关的群体(细菌、酵母和真菌、哺乳动物)中,DAAO的氨基酸序列之间的同源性也非常低。特别是,在细菌来源的DAAO中这一事实尤为明显。DAAO一级结构的高度变异性严重限制了在已知基因组中寻找新酶的工作。因此,许多(如果不是大多数)DAAO基因要么未被注释,要么被错误注释。我们提出了一种方法,该方法将生物信息学方法与一般的三维结构和活性中心结构分析相结合,以确认所发现的基因编码D-氨基酸氧化酶,并预测其底物特异性的可能类型。通过同源性搜索,我们获得了一组候选序列,对所选酶的三级结构进行了建模,并将它们与已知DAAO的实验结构和模型结构进行了比较。结果表明了所提出的区分DAAO和甘氨酸氧化酶方法的有效性。利用这种方法,在六种嗜极细菌菌株的基因组中发现了新的DAAO基因,并且在世界上首次在嗜盐古菌的基因组中鉴定出一个基因。初步实验证实了来自嗜盐碱孢囊菌ACPA39的DAAO对D-亮氨酸和D-苯丙氨酸的预测特异性。