School of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles (NUAA), MIIT, Nanjing, 211106, China.
J Math Biol. 2023 Jan 25;86(3):32. doi: 10.1007/s00285-023-01867-y.
To explore the influence of spatial heterogeneity on mosquito-borne diseases, we formulate a reaction-diffusion model with general incidence rates. The basic reproduction ratio [Formula: see text] for this model is introduced and the threshold dynamics in terms of [Formula: see text] are obtained. In the case where the model is spatially homogeneous, the global asymptotic stability of the endemic equilibrium is proved when [Formula: see text]. Under appropriate conditions, we establish the asymptotic profiles of [Formula: see text] in the case of small or large diffusion rates, and investigate the monotonicity of [Formula: see text] with respect to the heterogeneous diffusion coefficients. Numerically, the proposed model is applied to study the dengue fever transmission. Via performing simulations on the impacts of certain factors on [Formula: see text] and disease dynamics, we find some novel and interesting phenomena which can provide valuable information for the targeted implementation of disease control measures.
为了探究空间异质性对蚊媒传染病的影响,我们构建了一个具有广义感染率的反应扩散模型。引入了该模型的基本再生数[Formula: see text],并得到了关于[Formula: see text]的阈值动力学。在模型空间均匀的情况下,当[Formula: see text]时,证明了地方病平衡点的全局渐近稳定性。在适当的条件下,我们建立了小扩散率或大扩散率情况下[Formula: see text]的渐近形状,并研究了[Formula: see text]关于非均匀扩散系数的单调性。数值上,我们将所提出的模型应用于登革热传播的研究。通过对某些因素对[Formula: see text]和疾病动力学的影响进行模拟,我们发现了一些新颖有趣的现象,这些现象可以为有针对性地实施疾病控制措施提供有价值的信息。