Suppr超能文献

乳腺 X 线摄影与超声检查在乳腺癌诊断中的性能:系统评价和荟萃分析。

Diagnostic performance of mammography and ultrasound in breast cancer: a systematic review and meta-analysis.

机构信息

Department of Internal Medicine, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia.

Department of Physics, Faculty of Natural Sciences, Debre Tabor University, Debra Tabor, Ethiopia.

出版信息

J Ultrasound. 2023 Jun;26(2):355-367. doi: 10.1007/s40477-022-00755-3. Epub 2023 Jan 25.

Abstract

PURPOSE

The purpose of this study was to assess the diagnostic performance of mammography (MMG) and ultrasound (US) imaging for detecting breast cancer.

METHODS

Comprehensive searches of PubMed, Scopus and EMBASE from 2008 to 2021 were performed. A summary receiver operating characteristic curve (SROC) was constructed to summarize the overall test performance of MMG and US. Histopathologic analysis and/or close clinical and imaging follow-up for at least 6 months were used as golden reference.

RESULTS

Analysis of the studies revealed that the overall validity estimates of MMG and US in detecting breast cancer were as follows: pooled sensitivity per-patient were 0.82 (95% CI 0.76-0.87) and 0.83 (95% CI 0.71-0.91) respectively, The pooled specificities for detection of breast cancer using MMG, and US were 0.84 (95% CI 0.73-0.92) and 0.84 (95% CI 0.74-0.91) respectively. AUC of MMG, and US were 0.8933 and 0.8310 respectively. Pooled sensitivity and specificity per-lesion was 76% (95% CI 0.62-0.86) and 82% (95% CI 0.66-0.91) for MMG and 94% (95% CI 0.87-0.97) and 84% (95% CI 0.74-0.91) for US.

CONCLUSIONS

The meta-analysis found that, US and MMG has similar diagnostic performance in detecting breast cancer on per-patient basis after corrected threshold effect. However, on a per-lesion basis US was found to have a better diagnostic accuracy than MMG.

摘要

目的

本研究旨在评估乳腺摄影(MMG)和超声(US)成像在乳腺癌检测中的诊断性能。

方法

对 2008 年至 2021 年期间的 PubMed、Scopus 和 EMBASE 进行全面检索。构建了汇总受试者工作特征曲线(SROC),以总结 MMG 和 US 的总体检测性能。采用组织病理学分析和/或至少 6 个月的密切临床和影像学随访作为金标准。

结果

对研究的分析表明,MMG 和 US 检测乳腺癌的总体有效性估计值如下:每位患者的汇总敏感性分别为 0.82(95%置信区间 0.76-0.87)和 0.83(95%置信区间 0.71-0.91),使用 MMG 和 US 检测乳腺癌的汇总特异性分别为 0.84(95%置信区间 0.73-0.92)和 0.84(95%置信区间 0.74-0.91)。MMG 和 US 的 AUC 分别为 0.8933 和 0.8310。MMG 的汇总敏感性和特异性分别为 76%(95%置信区间 0.62-0.86)和 82%(95%置信区间 0.66-0.91),US 的敏感性和特异性分别为 94%(95%置信区间 0.87-0.97)和 84%(95%置信区间 0.74-0.91)。

结论

荟萃分析发现,在纠正阈值效应后,基于每位患者,US 和 MMG 在乳腺癌检测方面具有相似的诊断性能。然而,基于每例病变,US 的诊断准确性优于 MMG。

相似文献

1
Diagnostic performance of mammography and ultrasound in breast cancer: a systematic review and meta-analysis.
J Ultrasound. 2023 Jun;26(2):355-367. doi: 10.1007/s40477-022-00755-3. Epub 2023 Jan 25.
2
Mammography in combination with breast ultrasonography versus mammography for breast cancer screening in women at average risk.
Cochrane Database Syst Rev. 2023 Mar 31;3(3):CD009632. doi: 10.1002/14651858.CD009632.pub3.
3
A meta-analysis of 18FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with breast cancer.
Skeletal Radiol. 2011 May;40(5):523-31. doi: 10.1007/s00256-010-0963-8. Epub 2010 May 22.
4
Thoracic imaging tests for the diagnosis of COVID-19.
Cochrane Database Syst Rev. 2022 May 16;5(5):CD013639. doi: 10.1002/14651858.CD013639.pub5.
5
MRI-Based Radiomics Methods for Predicting Ki-67 Expression in Breast Cancer: A Systematic Review and Meta-analysis.
Acad Radiol. 2024 Mar;31(3):763-787. doi: 10.1016/j.acra.2023.10.010. Epub 2023 Nov 2.
7
Transabdominal ultrasound and endoscopic ultrasound for diagnosis of gallbladder polyps.
Cochrane Database Syst Rev. 2018 Aug 15;8(8):CD012233. doi: 10.1002/14651858.CD012233.pub2.
8
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.

引用本文的文献

1
Deep learning assisted non-invasive lymph node burden evaluation and CDK4/6i administration in luminal breast cancer.
iScience. 2025 Jun 7;28(7):112849. doi: 10.1016/j.isci.2025.112849. eCollection 2025 Jul 18.
2
Exploring the Evolution of Breast Cancer Imaging: A Review of Conventional and Emerging Modalities.
Cureus. 2025 Apr 22;17(4):e82762. doi: 10.7759/cureus.82762. eCollection 2025 Apr.
3
Correlation between ultrasound measurements and the expression of Her-2 and CD147 in breast cancer.
Am J Transl Res. 2025 Apr 15;17(4):3109-3118. doi: 10.62347/JAVK7987. eCollection 2025.
6
A multimodal machine learning model for the stratification of breast cancer risk.
Nat Biomed Eng. 2025 Mar;9(3):356-370. doi: 10.1038/s41551-024-01302-7. Epub 2024 Dec 4.
7
Diagnostic Value of Artificial Intelligence in Minimal Breast Lesions Based on Real-Time Dynamic Ultrasound Imaging.
Int J Gen Med. 2024 Sep 14;17:4061-4069. doi: 10.2147/IJGM.S479969. eCollection 2024.
8
Mammography and Breast Ultrasonography Services in Ghana, Availability, and Geographic Access.
JCO Glob Oncol. 2024 Aug;10:e2400218. doi: 10.1200/GO.24.00218.
9
[BIRADS 0 patient reclassification in a first-level of care unit].
Rev Med Inst Mex Seguro Soc. 2024 Jan 8;62(1):1-7. doi: 10.5281/zenodo.10278086.

本文引用的文献

1
Comprehensive analysis of clinical utility of three-dimensional ultrasound for benign and malignant breast masses.
Cancer Manag Res. 2018 Sep 6;10:3295-3303. doi: 10.2147/CMAR.S176494. eCollection 2018.
2
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.
3
Meta-Analysis: Contrast-Enhanced Ultrasound Versus Conventional Ultrasound for Differentiation of Benign and Malignant Breast Lesions.
Ultrasound Med Biol. 2018 May;44(5):919-929. doi: 10.1016/j.ultrasmedbio.2018.01.022. Epub 2018 Mar 9.
4
Meta-analysis of diagnostic accuracy of magnetic resonance imaging and mammography for breast cancer.
J Cancer Res Ther. 2017;13(5):862-868. doi: 10.4103/jcrt.JCRT_678_17.
5
Ultrasound Imaging Technologies for Breast Cancer Detection and Management: A Review.
Ultrasound Med Biol. 2018 Jan;44(1):37-70. doi: 10.1016/j.ultrasmedbio.2017.09.012. Epub 2017 Oct 26.
6
Breast cancer mammographic diagnosis performance in a public health institution: a retrospective cohort study.
Insights Imaging. 2017 Dec;8(6):581-588. doi: 10.1007/s13244-017-0573-2. Epub 2017 Oct 4.
8
Comparison of the Accuracy of Thermography and Mammography in the Detection of Breast Cancer.
Breast Care (Basel). 2016 Aug;11(4):260-264. doi: 10.1159/000448347. Epub 2016 Aug 25.
9
[The accuracy of mammography screening for breast cancer: a Meta-analysis].
Zhonghua Liu Xing Bing Xue Za Zhi. 2016 Sep 10;37(9):1296-1305. doi: 10.3760/cma.j.issn.0254-6450.2016.09.022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验