文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于 COVID-19 诊断的胸部影像学检查。

Thoracic imaging tests for the diagnosis of COVID-19.

机构信息

Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada.

Department of Radiology, University of Ottawa, Ottawa, Canada.

出版信息

Cochrane Database Syst Rev. 2022 May 16;5(5):CD013639. doi: 10.1002/14651858.CD013639.pub5.


DOI:10.1002/14651858.CD013639.pub5
PMID:35575286
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9109458/
Abstract

BACKGROUND: Our March 2021 edition of this review showed thoracic imaging computed tomography (CT) to be sensitive and moderately specific in diagnosing COVID-19 pneumonia. This new edition is an update of the review. OBJECTIVES: Our objectives were to evaluate the diagnostic accuracy of thoracic imaging in people with suspected COVID-19; assess the rate of positive imaging in people who had an initial reverse transcriptase polymerase chain reaction (RT-PCR) negative result and a positive RT-PCR result on follow-up; and evaluate the accuracy of thoracic imaging for screening COVID-19 in asymptomatic individuals. The secondary objective was to assess threshold effects of index test positivity on accuracy. SEARCH METHODS: We searched the COVID-19 Living Evidence Database from the University of Bern, the Cochrane COVID-19 Study Register, The Stephen B. Thacker CDC Library, and repositories of COVID-19 publications through to 17 February 2021. We did not apply any language restrictions. SELECTION CRITERIA: We included diagnostic accuracy studies of all designs, except for case-control, that recruited participants of any age group suspected to have COVID-19. Studies had to assess chest CT, chest X-ray, or ultrasound of the lungs for the diagnosis of COVID-19, use a reference standard that included RT-PCR, and report estimates of test accuracy or provide data from which we could compute estimates. We excluded studies that used imaging as part of the reference standard and studies that excluded participants with normal index test results. DATA COLLECTION AND ANALYSIS: The review authors independently and in duplicate screened articles, extracted data and assessed risk of bias and applicability concerns using QUADAS-2. We presented sensitivity and specificity per study on paired forest plots, and summarized pooled estimates in tables. We used a bivariate meta-analysis model where appropriate. MAIN RESULTS: We included 98 studies in this review. Of these, 94 were included for evaluating the diagnostic accuracy of thoracic imaging in the evaluation of people with suspected COVID-19. Eight studies were included for assessing the rate of positive imaging in individuals with initial RT-PCR negative results and positive RT-PCR results on follow-up, and 10 studies were included for evaluating the accuracy of thoracic imaging for imagining asymptomatic individuals. For all 98 included studies, risk of bias was high or unclear in 52 (53%) studies with respect to participant selection, in 64 (65%) studies with respect to reference standard, in 46 (47%) studies with respect to index test, and in 48 (49%) studies with respect to flow and timing. Concerns about the applicability of the evidence to: participants were high or unclear in eight (8%) studies; index test were high or unclear in seven (7%) studies; and reference standard were high or unclear in seven (7%) studies. Imaging in people with suspected COVID-19 We included 94 studies. Eighty-seven studies evaluated one imaging modality, and seven studies evaluated two imaging modalities. All studies used RT-PCR alone or in combination with other criteria (for example, clinical signs and symptoms, positive contacts) as the reference standard for the diagnosis of COVID-19. For chest CT (69 studies, 28285 participants, 14,342 (51%) cases), sensitivities ranged from 45% to 100%, and specificities from 10% to 99%. The pooled sensitivity of chest CT was 86.9% (95% confidence interval (CI) 83.6 to 89.6), and pooled specificity was 78.3% (95% CI 73.7 to 82.3). Definition for index test positivity was a source of heterogeneity for sensitivity, but not specificity. Reference standard was not a source of heterogeneity. For chest X-ray (17 studies, 8529 participants, 5303 (62%) cases), the sensitivity ranged from 44% to 94% and specificity from 24 to 93%. The pooled sensitivity of chest X-ray was 73.1% (95% CI 64. to -80.5), and pooled specificity was 73.3% (95% CI 61.9 to 82.2). Definition for index test positivity was not found to be a source of heterogeneity. Definition for index test positivity and reference standard were not found to be sources of heterogeneity. For ultrasound of the lungs (15 studies, 2410 participants, 1158 (48%) cases), the sensitivity ranged from 73% to 94% and the specificity ranged from 21% to 98%. The pooled sensitivity of ultrasound was 88.9% (95% CI 84.9 to 92.0), and the pooled specificity was 72.2% (95% CI 58.8 to 82.5). Definition for index test positivity and reference standard were not found to be sources of heterogeneity. Indirect comparisons of modalities evaluated across all 94 studies indicated that chest CT and ultrasound gave higher sensitivity estimates than X-ray (P = 0.0003 and P = 0.001, respectively). Chest CT and ultrasound gave similar sensitivities (P=0.42). All modalities had similar specificities (CT versus X-ray P = 0.36; CT versus ultrasound P = 0.32; X-ray versus ultrasound P = 0.89). Imaging in PCR-negative people who subsequently became positive For rate of positive imaging in individuals with initial RT-PCR negative results, we included 8 studies (7 CT, 1 ultrasound) with a total of 198 participants suspected of having COVID-19, all of whom had a final diagnosis of COVID-19. Most studies (7/8) evaluated CT. Of 177 participants with initially negative RT-PCR who had positive RT-PCR results on follow-up testing, 75.8% (95% CI 45.3 to 92.2) had positive CT findings. Imaging in asymptomatic PCR-positive people For imaging asymptomatic individuals, we included 10 studies (7 CT, 1 X-ray, 2 ultrasound) with a total of 3548 asymptomatic participants, of whom 364 (10%) had a final diagnosis of COVID-19. For chest CT (7 studies, 3134 participants, 315 (10%) cases), the pooled sensitivity was 55.7% (95% CI 35.4 to 74.3) and the pooled specificity was 91.1% (95% CI 82.6 to 95.7). AUTHORS' CONCLUSIONS: Chest CT and ultrasound of the lungs are sensitive and moderately specific in diagnosing COVID-19. Chest X-ray is moderately sensitive and moderately specific in diagnosing COVID-19. Thus, chest CT and ultrasound may have more utility for ruling out COVID-19 than for differentiating SARS-CoV-2 infection from other causes of respiratory illness. The uncertainty resulting from high or unclear risk of bias and the heterogeneity of included studies limit our ability to confidently draw conclusions based on our results.

摘要

背景:我们 2021 年 3 月发表的这篇综述的更新版显示,胸部影像学计算机断层扫描(CT)在诊断 COVID-19 肺炎方面具有较高的敏感性和中等特异性。这是对该综述的更新。

目的:我们的目的是评估疑似 COVID-19 患者的胸部影像学检查的诊断准确性;评估最初 RT-PCR 结果为阴性但后续 RT-PCR 结果为阳性的患者中阳性影像学检查的发生率;并评估胸部影像学检查对无症状个体 COVID-19 的筛查准确性。次要目的是评估截断值效应对准确性的影响。

检索方法:我们检索了伯尔尼大学 COVID-19 活证据数据库、考科蓝 COVID-19 研究注册库、斯蒂芬 B. 萨克 CDC 图书馆以及截至 2021 年 2 月 17 日的 COVID-19 出版物知识库,未设置任何语言限制。

选择标准:我们纳入了所有设计类型的诊断准确性研究,除病例对照研究外,还纳入了任何年龄组疑似 COVID-19 的参与者。研究必须评估 COVID-19 的胸部 CT、胸部 X 射线或肺部超声,使用包括 RT-PCR 在内的参考标准,并报告检测准确性的估计值或提供我们可以从中计算估计值的数据。我们排除了将影像学作为参考标准一部分的研究和排除了具有正常指数检测结果的参与者的研究。

数据收集和分析:综述作者独立且重复地筛选文章,使用 QUADAS-2 评估数据并评估偏倚风险和适用性问题。我们在配对森林图上展示了每项研究的敏感性和特异性,并在表格中汇总了汇总的估计值。在适当的情况下,我们使用了二变量荟萃分析模型。

主要结果:我们共纳入了 98 项研究。其中,94 项研究被纳入评估疑似 COVID-19 患者的胸部影像学检查的诊断准确性。8 项研究被纳入评估最初 RT-PCR 结果为阴性但后续 RT-PCR 结果为阳性的患者中阳性影像学检查的发生率,10 项研究被纳入评估胸部影像学检查对无症状个体的准确性。对于所有 98 项纳入的研究,52 项(53%)研究在参与者选择方面、64 项(65%)研究在参考标准方面、46 项(47%)研究在指数测试方面、48 项(49%)研究在流程和时间方面存在高或不明确的偏倚风险。对证据在:8 项(8%)研究中对参与者的适用性存在高或不明确的担忧;7 项(7%)研究中对指数测试存在高或不明确的担忧;7 项(7%)研究中对参考标准存在高或不明确的担忧。

在疑似 COVID-19 患者中的影像学表现:我们纳入了 94 项研究。87 项研究评估了一种影像学方式,7 项研究评估了两种影像学方式。所有研究均使用 RT-PCR 单独或与其他标准(例如临床症状和体征、阳性接触者)相结合作为 COVID-19 的诊断参考标准。对于胸部 CT(69 项研究,28285 名参与者,14342 例[51%]病例),敏感性范围为 45%至 100%,特异性范围为 10%至 99%。胸部 CT 的汇总敏感性为 86.9%(95%置信区间[CI]83.6%至89.6%),汇总特异性为 78.3%(95%CI 73.7%至82.3%)。指数检测阳性的定义是敏感性的异质性来源,但不是特异性的来源。参考标准不是异质性的来源。对于胸部 X 射线(17 项研究,8529 名参与者,5303 例[62%]病例),敏感性范围为 44%至 94%,特异性范围为 24%至 93%。胸部 X 射线的汇总敏感性为 73.1%(95%CI 64.至 80.5%),汇总特异性为 73.3%(95%CI 61.9%至 82.2%)。指数检测阳性的定义没有被发现是异质性的来源。指数检测阳性和参考标准的定义均未被发现是异质性的来源。对于肺部超声(15 项研究,2410 名参与者,1158 例[48%]病例),敏感性范围为 73%至 94%,特异性范围为 21%至 98%。肺部超声的汇总敏感性为 88.9%(95%CI 84.9%至 92.0%),汇总特异性为 72.2%(95%CI 58.8%至 82.5%)。指数检测阳性和参考标准的定义均未被发现是异质性的来源。对所有 94 项研究中评估的模态的间接比较表明,胸部 CT 和超声的敏感性估计值高于 X 射线(P = 0.0003 和 P = 0.001)。胸部 CT 和超声的敏感性相似(P=0.42)。所有模态的特异性相似(CT 与 X 射线 P = 0.36;CT 与超声 P = 0.32;X 射线与超声 P = 0.89)。

PCR 阴性人群中 PCR 阳性的影像学表现:对于最初 RT-PCR 结果为阴性但随后 RT-PCR 结果为阳性的患者中阳性影像学检查的发生率,我们纳入了 8 项研究(7 项 CT,1 项超声),共 198 名疑似 COVID-19 的患者,所有人最终均确诊为 COVID-19。大多数研究(7/8)评估了 CT。在最初 RT-PCR 为阴性但随后 RT-PCR 检测为阳性的 177 名参与者中,75.8%(95%CI 45.3%至 92.2%)的 CT 结果为阳性。

PCR 阳性无症状个体的影像学表现:我们纳入了 10 项研究(7 项 CT、1 项 X 射线、2 项超声),共 3548 名无症状参与者,其中 364 名(10%)最终确诊为 COVID-19。对于胸部 CT(7 项研究,3134 名参与者,315 例[10%]病例),敏感性为 55.7%(95%CI 35.4%至 74.3%),特异性为 91.1%(95%CI 82.6%至 95.7%)。

作者结论:胸部 CT 和肺部超声在诊断 COVID-19 方面具有较高的敏感性和中等特异性。胸部 X 射线在诊断 COVID-19 方面具有中等敏感性和中等特异性。因此,胸部 CT 和超声可能在排除 COVID-19 方面比区分 SARS-CoV-2 感染与其他呼吸道疾病更有用。高或不明确的偏倚风险以及纳入研究的异质性限制了我们根据结果得出结论的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/d0c6c7fbe878/nCD013639-TST-015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/a0b2bc40813e/nCD013639-FIG-01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/cfe67ed66dc9/nCD013639-FIG-02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/6a700cd947fd/nCD013639-FIG-03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/947568977990/nCD013639-FIG-04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/7c420666f1ab/nCD013639-FIG-05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/603452a533ac/nCD013639-FIG-06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/7e2634a0d3ae/nCD013639-FIG-07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/0934e700e839/nCD013639-FIG-08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/f00ec14569a8/nCD013639-FIG-09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/163bd2ef610c/nCD013639-FIG-10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/29450556cb64/nCD013639-FIG-11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/afaecd65c0a4/nCD013639-FIG-12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/64c3af2778f3/nCD013639-FIG-13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/6e729810b7a6/nCD013639-FIG-14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/158d32f1f172/nCD013639-FIG-15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/d75a94644159/nCD013639-FIG-16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/06a0b43f219c/nCD013639-TST-001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/0bb9594d921b/nCD013639-TST-002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/84efe4f2a547/nCD013639-TST-003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/163aaa4d6de8/nCD013639-TST-004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/98d5430ea766/nCD013639-TST-005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/987cdf13ee5a/nCD013639-TST-006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/dd6a6ee93cb8/nCD013639-TST-007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/81e160571d02/nCD013639-TST-008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/d0cd3e3c0f4b/nCD013639-TST-009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/0d411c2f0fba/nCD013639-TST-010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/9397cbee8df8/nCD013639-TST-011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/75bd3641f661/nCD013639-TST-012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/866c4872c14a/nCD013639-TST-013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/1281e10eac9d/nCD013639-TST-014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/d0c6c7fbe878/nCD013639-TST-015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/a0b2bc40813e/nCD013639-FIG-01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/cfe67ed66dc9/nCD013639-FIG-02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/6a700cd947fd/nCD013639-FIG-03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/947568977990/nCD013639-FIG-04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/7c420666f1ab/nCD013639-FIG-05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/603452a533ac/nCD013639-FIG-06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/7e2634a0d3ae/nCD013639-FIG-07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/0934e700e839/nCD013639-FIG-08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/f00ec14569a8/nCD013639-FIG-09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/163bd2ef610c/nCD013639-FIG-10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/29450556cb64/nCD013639-FIG-11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/afaecd65c0a4/nCD013639-FIG-12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/64c3af2778f3/nCD013639-FIG-13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/6e729810b7a6/nCD013639-FIG-14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/158d32f1f172/nCD013639-FIG-15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/d75a94644159/nCD013639-FIG-16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/06a0b43f219c/nCD013639-TST-001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/0bb9594d921b/nCD013639-TST-002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/84efe4f2a547/nCD013639-TST-003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/163aaa4d6de8/nCD013639-TST-004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/98d5430ea766/nCD013639-TST-005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/987cdf13ee5a/nCD013639-TST-006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/dd6a6ee93cb8/nCD013639-TST-007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/81e160571d02/nCD013639-TST-008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/d0cd3e3c0f4b/nCD013639-TST-009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/0d411c2f0fba/nCD013639-TST-010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/9397cbee8df8/nCD013639-TST-011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/75bd3641f661/nCD013639-TST-012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/866c4872c14a/nCD013639-TST-013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/1281e10eac9d/nCD013639-TST-014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efc/9109458/d0c6c7fbe878/nCD013639-TST-015.jpg

相似文献

[1]
Thoracic imaging tests for the diagnosis of COVID-19.

Cochrane Database Syst Rev. 2022-5-16

[2]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[3]
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2022-7-22

[4]
Antibody tests for identification of current and past infection with SARS-CoV-2.

Cochrane Database Syst Rev. 2022-11-17

[5]
Computed tomography for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease.

Cochrane Database Syst Rev. 2021-10-6

[6]
Magnetic resonance imaging for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease.

Cochrane Database Syst Rev. 2022-5-6

[7]
Clinical judgement by primary care physicians for the diagnosis of all-cause dementia or cognitive impairment in symptomatic people.

Cochrane Database Syst Rev. 2022-6-16

[8]
Thoracic imaging tests for the diagnosis of COVID-19.

Cochrane Database Syst Rev. 2021-3-16

[9]
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.

Cochrane Database Syst Rev. 2022-3-2

[10]
Contrast-enhanced ultrasound for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease.

Cochrane Database Syst Rev. 2022-9-2

引用本文的文献

[1]
Improving the accuracy of emergency department clinicians in detecting SARS-COV-2 on chest X-rays using a bespoke virtual training platform.

BMC Med Educ. 2025-8-6

[2]
Relationship between the computed tomography pattern and vaccination status in individuals with COVID-19.

Radiol Bras. 2025-7-17

[3]
Lung ultrasound is cost-effective for early diagnosis of COVID-19 pneumonia in primary care.

BMC Pulm Med. 2025-7-2

[4]
Coinfection of COVID-19 and malaria: clinical profiles, interactions, and strategies for effective control.

Malar J. 2025-3-25

[5]
Sarcopenia diagnosed by computed tomography predicts postoperative complications in advanced epithelial ovarian cancer.

Aging Clin Exp Res. 2024-12-27

[6]
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2024-12-16

[7]
Extension of the PRISMA 2020 statement for living systematic reviews (PRISMA-LSR): checklist and explanation.

BMJ. 2024-11-19

[8]
Impact of Lung Ultrasound along with C-Reactive Protein Point-of-Care Testing on Clinical Decision-Making and Perceived Usefulness in Routine Healthcare for Patients with Lower Respiratory Tract Infections: Protocol for Analytical Observational Study.

J Clin Med. 2024-9-27

[9]
Exploring the Interplay of Dataset Size and Imbalance on CNN Performance in Healthcare: Using X-rays to Identify COVID-19 Patients.

Diagnostics (Basel). 2024-8-8

[10]
Evolving and Novel Applications of Artificial Intelligence in Thoracic Imaging.

Diagnostics (Basel). 2024-7-8

本文引用的文献

[1]
Development and validation of chest CT-based imaging biomarkers for early stage COVID-19 screening.

Front Public Health. 2022

[2]
Chest CT performance and features of COVID-19 in the region of Abu Dhabi, UAE: a single institute study.

Chin J Acad Radiol. 2021

[3]
HRCT chest in COVID-19 patients: An initial experience from a private imaging center in western India.

Indian J Radiol Imaging. 2021-1

[4]
Diagnostic accuracy and false-positive rate of chest CT as compared to RT-PCR in coronavirus disease 2019 (COVID-19) pneumonia: A prospective cohort of 612 cases from India and review of literature.

Indian J Radiol Imaging. 2021-1

[5]
Radiographic findings in COVID-19: Comparison between AI and radiologist.

Indian J Radiol Imaging. 2021-1

[6]
Accuracy of Low-Dose Chest CT Scan in Detection of COVID-19.

Radiol Cardiothorac Imaging. 2020-5-27

[7]
Radiological Society of North America Expert Consensus Document on Reporting Chest CT Findings Related to COVID-19: Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA.

Radiol Cardiothorac Imaging. 2020-3-25

[8]
Imaging Profile of the COVID-19 Infection: Radiologic Findings and Literature Review.

Radiol Cardiothorac Imaging. 2020-2-13

[9]
Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2021-3-24

[10]
Thoracic imaging tests for the diagnosis of COVID-19.

Cochrane Database Syst Rev. 2021-3-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索