Jia Zhichao, Lyu Xiang, Zhao Mingsheng, Dang Jianan, Zhu Linge, Guo Xiaowei, Wang Xiaobing, Bai Zhengyu, Yang Lin
Henan Normal University, School of Chemistry and Chemical Engineering, Xinxiang, Henan, 453007, P. R. China.
Oak Ridge National Laboratory, Electrification and Energy Infrastructures Division, Oak Ridge, TN 37831, USA.
Chem Asian J. 2023 Mar 14;18(6):e202201305. doi: 10.1002/asia.202201305. Epub 2023 Feb 1.
Developing a fast and highly active oxygen evolution reaction (OER) catalyst to change energy kinetics technology is essential for making clean energy. Herein, we prepare three-dimensional (3D) hollow Mo-doped amorphous FeOOH (Mo-FeOOH) based on the precatalyst MoS /FeC O via in situ reconstruction strategy. Mo-FeOOH exhibits promising OER performance. Specifically, it has an overpotential of 285 mV and a durability of 15 h at 10 mA cm . Characterizations indicate that Mo was included inside the FeOOH lattice, and it not only modifies the electronic energy levels of FeOOH but also effectively raises the inherent activity of FeOOH for OER. Additionally, in situ Raman analysis indicates that FeC O gradually transforms into the FeOOH active site throughout the OER process. This study provides ideas for designing in situ reconstruction strategies to prepare heteroatom doping catalysts for high electrochemical activity.
开发一种快速且高活性的析氧反应(OER)催化剂以改变能量动力学技术对于制造清洁能源至关重要。在此,我们基于前驱体MoS₂/FeC₂O₄通过原位重构策略制备了三维(3D)空心Mo掺杂非晶态FeOOH(Mo-FeOOH)。Mo-FeOOH表现出有前景的OER性能。具体而言,在10 mA cm⁻²时它具有285 mV的过电位和15 h的耐久性。表征表明Mo被纳入FeOOH晶格内部,它不仅改变了FeOOH的电子能级,还有效提高了FeOOH对OER的固有活性。此外,原位拉曼分析表明在整个OER过程中FeC₂O₄逐渐转变为FeOOH活性位点。本研究为设计原位重构策略以制备具有高电化学活性的杂原子掺杂催化剂提供了思路。