Zhang Bing, Shan Jiongwei, Wang Xinying, Hu Yanjie, Li Yunyong
School of Materials and Energy, Guangdong University of Technology, Guangzhou Higher Education Mega Center, No. 100 Waihuan Xi Road, Guangzhou, 510006, China.
Small. 2022 Jun;18(25):e2200173. doi: 10.1002/smll.202200173. Epub 2022 May 13.
Oxyhydroxides hold promise as highly-efficient non-noble electrocatalysts for the oxygen evolution reaction (OER), but their poor conductivity and structural instability greatly impede their progress. Herein, the authors develop a cation-doping and oxygenvacancy engineering strategy to fabricate Ru/Rh-doped FeOOH nanoarrays with abundant oxygen-vacancies in situ grown on Ti C T MXene (Ru/Rh-FeOOH@Ti C T ) as highly-efficient OER electrocatalysts. Benefiting from Ru/Rh-cation regulation, oxygenvacancy engineering, and heterojunction synergy between MXene and modulated FeOOH, the optimized Rh/Ru-FeOOH@Ti C T electrocatalysts exhibit excellent OER activities and remarkable stabilities with 100 h. Particularly, 3%Rh-FeOOH@Ti C T electrocatalyst only needs a 223 mV overpotential at 10 mA cm and 306 mV to reach 100 mA cm , which is superior to commercial IrO catalyst and most reported oxyhydroxide-based electrocatalysts. Further, systematically theoretical caculation, kinetics, thermodynamics, and microstructural analysis verify that the integration of Ru/Rh-cation doping and oxygen vacancy obviously enhances the intrinsic conductivity and lattice defects of FeOOH and expose more active sites, thereby decreasing the adsorption/desorption energy barrier and activation energy, and improving the specific activity and catalytic kinetics of electrocatalysts, whereas in situ hybridization with MXene strengthens the structural stability. This work clearly confirms that cationdoping and oxygen-vacancy engineering offers a joint strategy for the electronic structure modulation and design of highly-efficient inexpensive OER electrocatalysts.
羟基氧化物有望成为用于析氧反应(OER)的高效非贵金属电催化剂,但其导电性差和结构不稳定极大地阻碍了它们的发展。在此,作者开发了一种阳离子掺杂和氧空位工程策略,以制备在Ti C T MXene上原位生长的具有丰富氧空位的Ru/Rh掺杂FeOOH纳米阵列(Ru/Rh-FeOOH@Ti C T)作为高效OER电催化剂。受益于Ru/Rh阳离子调控、氧空位工程以及MXene与调制FeOOH之间的异质结协同作用,优化后的Rh/Ru-FeOOH@Ti C T电催化剂表现出优异的OER活性和100小时的显著稳定性。特别地,3%Rh-FeOOH@Ti C T电催化剂在10 mA cm时仅需要223 mV的过电位,在达到100 mA cm时需要306 mV,优于商业IrO催化剂和大多数报道的基于羟基氧化物的电催化剂。此外,系统的理论计算、动力学、热力学和微观结构分析证实,Ru/Rh阳离子掺杂和氧空位的结合明显提高了FeOOH的本征导电性和晶格缺陷,并暴露了更多活性位点,从而降低了吸附/解吸能垒和活化能,提高了电催化剂的比活性和催化动力学,而与MXene的原位杂交增强了结构稳定性。这项工作明确证实,阳离子掺杂和氧空位工程为高效廉价OER电催化剂的电子结构调制和设计提供了一种联合策略。